首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
《中国化学会会志》2017,64(5):539-546
Porous Co3O4 nanosheets were designed and fabricated from common Co(NO3 )2 solution without any surfactants or templates under microwave radiation conditions. After the microstructures and morphologies were characterized by scanning electron microscope (SEM ), X‐ray powder diffraction (XRD ), transmission electron microscopy (TEM ), and N2 absorption/desorption isotherms techniques, the obtained Co3O4 nanosheets were applied for reversible Li‐storage, displaying larger capacity, better cycling performance and rate capability, i.e., a reversible specific capacity of ca. 800 mAh /g during initial 30 cycles and a reversible capacity of 450 mAh /g at 2C for Co3O4 nanosheets, which were almost twice higher than those for Co3O4 nanoparticles. The improved cycling stability could be attributed to the remarkable synergistic effects between porous structures and nanosheet‐like morphologies.  相似文献   

2.
Mussel‐inspired two‐dimensional freestanding, alkyl‐polydopamine (alkyl‐PDA) Janus nanosheets, with a well‐controlled nanometer thickness and a lateral size of up to micrometers, have been developed. A self‐assembled octadecylamine (ODA) bilayer is used as the reactive template for the dopamine polymerization, resulting in the formation of well‐defined nanosheets. The alkyl‐PDA nanosheets show an amphiphilic nature with hydrophilic PDA and hydrophobic alkyl chains on opposing sides. The nanosheets can be used to functionalize many substrates and is dependent on the configuration of surface of the nanosheets. The nanosheets are quite stable, as the morphology is preserved after carbonization at 900 °C. Post‐modification of the nanosheets can be easily achieved because of the reactive nature of PDA. This work will provide a new strategic approach for fabricating polymeric Janus nanosheets, which can find applications for surface modifications, catalyst supports, and guided self‐assembly.  相似文献   

3.
Covalent organic nanosheets (CONs) are a new class of porous thin two‐dimensional (2D) nanostructures that can be easily designed and functionalized and could be useful for separation applications. Poor dispersion, layer restacking, and difficult postsynthetic modifications are the major hurdles that need to be overcome to fabricate scalable CON thin films. Herein, we present a unique approach for the chemical exfoliation of an anthracene‐based covalent organic framework (COF) to N‐hexylmaleimide‐functionalized CONs, to yield centimeter‐sized free‐standing thin films through layer‐by‐layer CON assembly at the air–water interface. The thin‐layer fabrication technique presented here is simple, scalable, and does not require any surfactants or stabilizing agents.  相似文献   

4.
Two‐dimensional (2D) carbon nanomaterials possessing promising physical and chemical properties find applications in high‐performance energy storage devices and catalysts. However, large‐scale fabrication of 2D carbon nanostructures is based on a few specific carbon templates or precursors and poses a formidable challenge. Now a new bottom‐up method for carbon nanosheet fabrication using a newly designed anisotropic carbon nanoring molecule, CPPhen, is presented. CPPhen was self‐assembled at a dynamic air–water interface with a vortex motion to afford molecular nanosheets, which were then carbonized under inert gas flow. Their nanosheet morphologies were retained after carbonization, which has never been seen for low‐molecular weight compounds. Furthermore, adding pyridine as a nitrogen dopant in the self‐assembly step successfully afforded nitrogen‐doped carbon nanosheets containing mainly pyridinic nitrogen species.  相似文献   

5.
Despite the availability of numerous two‐dimensional (2D) materials with structural ordering at the atomic or molecular level, direct construction of mesoscale‐ordered superstructures within a 2D monolayer remains an enormous challenge. Here, we report the synergic manipulation of two types of assemblies in different dimensions to achieve 2D conducting polymer nanosheets with structural ordering at the mesoscale. The supramolecular assemblies of amphipathic perfluorinated carboxylic acids and block co‐polymers serve as 2D interfaces and meso‐inducing moieties, respectively, which guide the polymerization of aniline into 2D, free‐standing mesoporous conducting polymer nanosheets. Grazing‐incidence small‐angle X‐ray scattering combined with various microscopy demonstrates that the resulting mesoscale‐ordered nanosheets have hexagonal lattice with d‐spacing of about 30 nm, customizable pore sizes of 7–18 nm and thicknesses of 13–45 nm, and high surface area. Such template‐directed assembly produces polyaniline nanosheets with enhanced π–π stacking interactions, thereby resulting in anisotropic and record‐high electrical conductivity of approximately 41 S cm?1 for the pristine polyaniline nanosheet based film and approximately 188 S cm?1 for the hydrochloric acid‐doped counterpart. Our moldable approach creates a new family of mesoscale‐ordered structures as well as opens avenues to the programmed assembly of multifunctional materials.  相似文献   

6.
Mixed matrix membranes (MMMs) made from inorganic fillers and polymers is a kind of promising candidate for gas separation. In this work, two‐dimensional MXene nanosheets were synthesized and incorporated into a polyether‐polyamide block copolymer (Pebax) matrix to fabricate MMM for CO2 capture. The physicochemical properties of MXene nanosheets and MXene/Pebax membranes were studied systematically. The introduction of MXene nanosheets provided additional molecular transport channels and meanwhile enhanced the CO2 adsorption capacity, thereby enhancing both the CO2 peremance and CO2/N2 selectivity of Pebax membrane. The optimized MXene/Pebax membrane with a MXene loading of 0.15 wt % displayed a high separation performance with a CO2 permeance of 21.6 GPU and a CO2/N2 selectivity of 72.5, showing potential application in CO2 capture.  相似文献   

7.
The current buzzword in science and technology is self‐assembly and molecular self‐assembly is one of the most prominent fields as far as research in chemical and biological sciences is concerned. Generally, self‐assembly of molecules occurs through weak non‐covalent interactions like hydrogen bonding, π–π stacking, hydrophobic effects, etc. Inspired by many natural systems consisting of self‐assembled structures, scientists have been trying to understand their formation and mimic such processes in the laboratory to create functional “smart” materials, which respond to temperature, light, pH, electromagnetic field, mechanical stress, and/or chemical stimuli. These responses are usually manifested as remarkable changes from the molecular (e. g., conformational state, hierarchical order) to the macroscopic level (e. g., shape, surface properties). Many molecules such as peptides, viruses, and surfactants are known to self‐assemble into different structures. Among them, glycolipids are the new entries in the area of molecules that are being investigated for their self‐assembly characteristics. Among the different classes of glycolipids like rhamnolipids and trehalose lipids, owing to their biological preparations and their structural novelty, sophorolipids (SLs) are evoking greater interest among researchers. Sophorolipids are a class of asymmetric bolas bearing COOH groups at one end and sophorose (dimeric glucose linked by an unusual β(1→2) linkage). The extreme membrane stability of Archaea, attributed to the membrane‐spanning bolas (tetraether glycolipids), has inspired chemists to unravel the molecular designs that underpin the self‐assembly of bolaamphiphilic molecules. Apart from these self‐assembled structures, bolaamphiphiles find applications in many fields such as drug delivery, membrane mimicking, siRNA therapies, etc. The first part of this Personal Account presents some possible self‐assembled structures of bolaamphiphiles and their mechanism of formation. The later part covers our work on one of the typical bolaamphiphiles known as sophorolipids.  相似文献   

8.
Two‐dimensional (2D) materials are promising candidates for advanced water purification membranes. A new kind of lamellar membrane is based on a stack of 2D MXene nanosheets. Starting from compact Ti3AlC2, delaminated nanosheets of the composition Ti3C2Tx with the functional groups T (O, OH, and/or F) can be produced by etching and ultrasonication and stapled on a porous support by vacuum filtration. The MXene membrane supported on anodic aluminum oxide (AAO) substrate shows excellent water permeance (more than 1000 L m−2 h−1 bar−1) and favorable rejection rate (over 90 %) for molecules with sizes larger than 2.5 nm. The water permeance through the MXene membrane is much higher than that of the most membranes with similar rejections. Long‐time operation also reveals the outstanding stability of the MXene membrane for water purification.  相似文献   

9.
Core–shell TiO2 microspheres possess a unique structure and interesting properties, and therefore, they have received much attention. The high‐energy facets of TiO2 also are being widely studied for the high photocatalytic activities they are associated with. However, the synthesis of the core–shell structure is difficult to achieve and requires multiple‐steps and/or is expensive. Hydrofluoric acid (HF), which is highly corrosive, is usually used in the controlling high‐energy facet production. Therefore, it is still a significant challenge to develop low‐temperature, template‐free, shape‐controlled, and relative green self‐assembly routes for the formation of core–shell‐structured TiO2 microspheres with high‐energy facets. Here, we report a template‐ and hydrofluoric acid free solvothermal self‐assembly approach to synthesize core–shell TiO2 microspheres covered with high‐energy {116}‐facet‐exposed nanosheets, an approach in which 1,4‐butanediamine plays a key role in the formation of nanosheets with exposed {116} facets and the doping of nitrogen in situ. In the structure, nanoparticle aggregates and nanosheets with {116} high‐energy facets exposed act as core and shell, respectively. The photocatalytic activity for degradation of 2,4,6‐tribromophenol and Rhodamine B under visible irradiation and UV/Vis irradiation has been examined, and improved photocatalytic activity under visible light owing to the hierarchical core–shell structure, {116}‐plane‐oriented nanosheets, in situ N doping, and large surface areas has been found.  相似文献   

10.
We report a new method in which spontaneous self‐assembly is employed to synthesize monodisperse polymer nanoparticles with controlled size (<50 nm), shape, tunable functionality, and enhanced solvent and thermal stability. Cooperative noncovalent interactions, such as hydrogen bonding and aromatic π–π stacking, assist self‐assembly of amphiphilic macromolecules (polystyrene‐block‐polyvinylpyridine, PS? PVP) and structure directing agents (SDAs) to form both spherical and anisotropic solid polymer nanoparticles with SDAs residing in the particle core surrounded by the polymers. Through detailed investigations by scanning electron microscopy and transmission electron microscopy (TEM), we have rationalized nanoparticle morphology evolution and dependence on factors such as SDA concentration and PVP size. By keeping the PS chain size constant, the particle morphology progresses from continuous films to spherical particles, and on to cylindrical nanowires or rods with increasing the PVP chain size. The final nanoparticles are very stable and can be redispersed in common solvents to form homogenous solutions and thin films of ordered nanoparticle arrays through solvent evaporation processes. These nanoparticles exhibit tunable fluorescent colors (or emissions) depending on the choices of the central SDAs. Our method is simple and general without requiring complicated synthetic chemistry, stabilizing surfactants, or annealing procedures (e.g., temperature or solvent annealing), making scalable synthesis feasible.  相似文献   

11.
Discrete nanosheets of silicon‐doped AlPO4 molecular sieves (SAPO‐34) with a thickness of ≈7 nm have been prepared through morphology‐reserved synthesis with a lamellar aluminum phosphate as precursor. Cages of the nanosheets are in situ incorporated with copper oxide clusters. The CuO@SAPO‐34 nanosheets exhibit a large external surface area with a high number of (010) channel pores on the surface. Due to the thin morphology, copper oxide clusters occupy the outmost cages with a probability >50 %. The distinctive configuration facilitates a new concept of pore mouth catalysis, i.e., reactant molecules larger than the pores cannot enter the interior of the molecular sieves but can interact with the CuO clusters at “the mouth” of the pore. In heterogeneous catalysis, CuO@SAPO‐34 nanosheets have shown top performance in one‐pot oxidation of cyclohexane to adipic acid by O2, a key compound for the manufacture of nylon‐66, which is so far produced using non‐green nitric acid oxidation.  相似文献   

12.
Self‐assembly of nanomaterials to yield a wide diversity of high‐order structures, materials, and devices promises new opportunities for various technological applications. Herein, we report that crack formation can be effectively harnessed by elaborately restricting the drying of colloidal suspension using a flow‐enabled self‐assembly (FESA) strategy to yield large‐area periodic cracks (i.e., microchannels) with tunable spacing. These uniform microchannels can be utilized as a template to guide the assembly of Au nanoparticles, forming intriguing nanoparticle threads. This strategy is simple and convenient. As such, it opens the possibility for large‐scale manufacturing of crack‐based or crack‐derived assemblies and materials for use in optics, electronics, optoelectronics, photonics, magnetic device, nanotechnology, and biotechnology.  相似文献   

13.
A novel supramolecular solvent‐based microextraction followed by high‐performance liquid chromatography with ultraviolet detection method has been developed for the extraction and determination of two pyrethroid analytes, cyhalothrin and fenvalerate, in water and soil samples. The liquid–liquid‐phase separation of surfactants has been used in analytical extraction. The surfactant‐rich phase is a nano‐structured liquid, recently named as a supramolecular solvent, generated from the amphiphiles. The alkyl carboxylic acid based supramolecular solvents were introduced before. Coacervates made up of gemini surfactant, consisting of two amphiphilic moieties, were first used as solvent. The effective parameters on extraction (i.e., type of organic solvent, the amount of surfactant and volume of tetrahydrofuran, sample solution pH, salt addition, ultrasonic and centrifugation time) were investigated and optimized. Under the optimum conditions, preconcentration factors of 110 and 145 were obtained for the analytes. The linearity was 0.5–200.0 μg/L with the correlation of determination of (R2) ≥ 0.9984. The limit of detection of the method was (S/N = 3) 0.2 μg/L, and precisions in the range of 6.3–10.3% (RSDs, n = 5) were obtained. This method has been successfully applied to analyze real samples, and good recoveries in the range of 101.2–108.8% were obtained.  相似文献   

14.
A new multi‐variable‐measurement approach for characterizing and correlating the nanoscale and microscale morphology of crystal‐amorphous polymer blends with melt‐phase behavior is described. A vertical small‐angle light scattering (SALS) instrument optimized for examining the scattering and light transmitted from structures ranging from 0.5 to 50 μm, thereby spanning the size range characteristic of the initial‐to‐late stages of thermal‐phase transitions (e.g., melt‐phase separation and crystallization) in crystal‐amorphous polymer blends, was constructed. The SALS instrument was interfaced with differential scanning calorimetry (DSC), and simultaneous SALS/DSC/transmission measurements were performed. We show that the measurement of transmitted light and SALS under HV (cross‐polarized) optical alignments during melting can be used to reliably measure the thermodynamic (e.g., crystal melting and melt‐phase separation temperatures) and structural variables (e.g., crystalline fraction within the superstructures and volume fraction of superstructures) necessary for describing the multiphase behavior of crystal‐amorphous blends in one combined measurement. We also evaluate the orientation correlations of crystalline volume elements within the superstructures. Our results indicate that simultaneous measurement of transmitted light can provide a reliable estimate of the total scattering from density and orientation fluctuations and the melt‐phase separation temperature of polymer blends. For solution‐cast poly(?‐caprolactone)/poly(D,L‐lactic acid) blends, our multivariable measurements during melting provide the parameters necessary to generate a crystal–liquid and liquid–liquid phase diagram and characterize the solid‐state morphology. This opens up the challenge to explore use of our vertical SALS instrument as a rapid and convenient method for developing structure–property relationships for crystal‐amorphous polymer blends. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2714–2727, 2002  相似文献   

15.
Structured liquids, generated by the interfacial formation, assembly, and jamming of nanoparticle (NP)‐surfactants at liquid/liquid interfaces, maintain all the desirable characteristics of each liquid, while providing a spatially structured framework. Herein, we show that rod‐like cellulose nanocrystal (CNC)‐based NP‐surfactants, termed CNC‐surfactants, are formed rapidly at the liquid/liquid interface, assemble into a monolayer, and, when jammed, offer a robust assembly with exceptional mechanical properties. Plateau–Rayleigh (PR) instabilities of a free‐falling jet of an aqueous medium containing the CNCs into a toluene solution of amine end‐functionalized polystyrene are completely suppressed, allowing the jetting of aqueous tubules that are stabilized when the CNC‐surfactants are jammed at the interface. These results open a new platform for the additive manufacturing techniques, for example, three‐dimensional (3D) printing, of all‐liquid constructs.  相似文献   

16.
Using small molecules in polymer matrices is common in applications such as (i) plasticizing polymers to modify the glass transition and mechanical properties and (ii) dispersion of photoactive or electroactive small molecules in polymer matrices in organic‐electronic devices Aggregation of these small molecules and phase separation leading to crystallization often cannot be morphologically controlled. If these are designed with self‐assembling codes such as hydrogen bonding or aromatic interactions, their phase separation behavior would be distinctly different. This review summarizes the studies on morphologies in such situations, such as (i) sub‐surface assembly in polymer matrices, (ii) controlled polymerization‐induced phase separation to create polymer blends, (iii) using the polymer to direct the assembly of small molecules in liquid crystalline devices, (iv) functionalizing a polymer with self‐assembling small molecules to cause organo‐gelation which the polymer itself would not by itself, and (v) using such systems as templates to create porous polymer structures. Organic–inorganic hybrids using polymers as templates for nanostructures and imprinted porous membranes is an emerging area. Since self‐assembly is one of the dominating area of research with respect to both small molecules, polymers as well as the combination of the two, this review summarizes the studies on the aforementioned topics. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 451–478  相似文献   

17.
The evaluation of nanostructure is important to develop the highly controlled nanomaterials. In this study, two kinds of layered titanate nanosheets, which were produced by using hexylamine and laurylamine, respectively, as surfactants were investigated by Gentle Secondary Ion Mass Spectrometry Gentle‐SIMS (G‐SIMS) and g‐ogram, which is the latest Time‐of‐Flight Secondary Ion Mass Spectrometry (TOF‐SIMS) data analysis method for detecting more intact ions and obtaining the information on original chemical structures of samples precisely from complicated TOF‐SIMS spectra. As a result, molecular related ions of the surfactants were detected from each sample, and the structural information of samples was obtained. From both samples, surfactant molecular ions connected with hydrocarbon were detected as more intact ions rather than molecular ions of themselves. It was suggested that hydrophobic domains of their lamellar mesostructure are formed robustly by more than two surfactant molecules connected with each other linearly. After all, important information on the chemical structure of the layered titanate nanosheets, which would be difficult to be found by using typical structural analysis methods such as X‐ray diffraction and transmission electron microscopy, were obtained using G‐SIMS and g‐ogram. Therefore, it was shown that g‐ogram and G‐SIMS are helpful to evaluate the nanostructured materials. And it was also shown that g‐ogram is applicable to organic–inorganic materials which contain long hydrocarbon structures. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
Free‐standing 2D porous nanomaterials have attracted considerable interest as ideal candidates of 2D film electrodes for planar energy storage devices. Nevertheless, the construction of well‐defined mesopore arrays parallel to the lateral surface, which facilitate fast in‐plane ionic diffusion, is a challenge. Now, a universal interface self‐assembly strategy is used for patterning 2D porous polymers, for example, polypyrrole, polyaniline, and polydopamine, with cylindrical mesopores on graphene nanosheets. The resultant 2D sandwich‐structured nanohybrids are employed as the interdigital microelectrodes for the assembly of planar micro‐supercapacitors (MSCs), which deliver outstanding volumetric capacitance of 102 F cm?3 and energy density of 2.3 mWh cm?3, outperforming most reported MSCs. The MSCs display remarkable flexibility and superior integration for boosting output voltage and capacitance.  相似文献   

19.
The application of protective overoxidized poly‐1‐naphtylamine membrane (ONAP) is demonstrated in combination with bismuth film microelectrode (ONAP‐BiFME) for anodic stripping voltammetric measurement of trace heavy metals in the presence of some selected surfactants. The ONAP membrane was electrochemically deposited on the surface of bare single carbon fiber microelectrode followed by the in situ or ex situ preparation of the bismuth film. The key operational parameters influencing the stripping performance of the ONAP‐BiFME were optimized and its electroanalytical performance was examined in the model solution containing Cd(II) and Pb(II) as test metal ions. The ONAP‐BiFME exhibited significantly enhanced stripping voltammetric response (approximately 70% for Cd(II) and 45% for Pb(II)) in comparison with unmodified BiFME in the absence of surfactants. In the presence of high concentrations, e.g., 20 mg L?1, of anionic or cationic surfactants, the stripping signal for, e.g., Cd(II) decreased for less than 6% at the ONAP‐BiFME, whereas at the unmodified BiFME the signal attenuated considerably (approximately 38%). Moreover, in the presence of 10 mg L?1 of nonionic surfactant Triton X‐100, the stripping signals at the bare BiFME were almost completely suppressed, whereas at the ONAP‐BiFME exhibited linear concentration behavior in the examined concentration range from 10 to 120 μg L?1, with the calculated limit of detection of 5.0 μg L?1 and 3.4 μg L?1 for Cd(II) and Pb(II), respectively in connection with 60 s accumulation time. The attractive behavior of ONAP‐modified BiFME expands the applicability of bismuth‐based electrodes for measurement of trace heavy metals in real environments, where the presence of more complex matrix can be expected.  相似文献   

20.
Spontaneous formation of concentric lamellae was observed in self‐assembling giant surfactants consisting of a fluorinated polyhedral oligomeric silsesquioxane (FPOSS) head and flexible polymer tail(s). Owing to the asymmetrical sizes of the head and tail blocks and the rectangular molecular interface, the giant surfactants assumed a truncated‐wedge‐like molecular shape, which induced morphological curvature during self‐assembly, thus resulting in the formation of curved and concentric lamellae. These curved/concentric lamellae were observed in FPOSS‐based giant surfactants with different architectures and compositions. The spontaneous curvature formation not only promotes our fundamental understanding of assembly principles, but also provides a promising and efficient approach to the fabrication of a wide range of high‐performance devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号