首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new type of Zintl phase is presented that contains endohedrally filled clusters and that allows for the formation of intermetalloid clusters in solution by a one‐step synthesis. The intermetallic compound K5?xCo1?xSn9 was obtained by the reaction of a preformed Co? Sn alloy with potassium and tin at high temperatures. The diamagnetic saltlike ternary phase contains discrete [Co@Sn9]5? clusters that are separated by K+ ions. The intermetallic compound K5?xCo1?xSn9 readily and incongruently dissolves in ethylenediamine and in the presence of 4,7,13,16,21,24‐hexaoxa‐1,10‐diazabicyclo[8.8.8]hexacosane (2.2.2‐crypt), thereby leading to the formation of crystalline [K([2.2.2]crypt)]5[Co2Sn17]. The novel polyanion [Co2Sn17]5? contains two Co‐filled Sn9 clusters that share one vertex. Both compounds were characterized by single‐crystal X‐ray structure analysis. The diamagnetism of K5?xCo1?xSn9 and the paramagnetism of [K([2.2.2]crypt)]5[Co2Sn17] have been confirmed by superconducting quantum interference device (SQUID) and EPR measurements, respectively. Quantum chemical calculations reveal an endohedral Co1? atom in an [Sn9]4? nido cluster for [Co@Sn9]5? and confirm the stability of the paramagnetic [Co2Sn17]5? unit.  相似文献   

2.
A systematic approach to the formation of endohedrally filled atom clusters by a high‐temperature route instead of the more frequent multistep syntheses in solution is presented. Zintl phases Na12Ni1?xSn17 and K13?xCo1?xSn17, containing endohedrally filled intermetalloid clusters [Ni@Sn9]4? or [Co@Sn9]5? beside [Sn4]4?, are obtained from high‐temperature reactions. The arrangement of [Ni@Sn9]4? or [Co@Sn9]5? and [Sn4]4? clusters, which are present in the ratio 1:2, can be regarded as a hierarchical replacement variant of the hexagonal Laves phase MgZn2 on the Mg and Zn positions, respectively. The alkali‐metal positions are considered for the first time in the hierarchical relationship, which leads to a comprehensive topological parallel and a better understanding of the composition of these compounds. The positions of the alkali‐metal atoms in the title compounds are related to the known inclusion of hydrogen atoms in the voids of Laves phases. The inclusion of Co atoms in the {Sn9} cages correlates strongly with the number of K vacancies in K13?xCo1?xSn17 and K5?xCo1?xSn9, and consequently, all compounds correspond to diamagnetic valence compounds. Owing to their diamagnetism, K13?xCo1?xSn17, and K5?xCo1?xSn9, as well as the d‐block metal free binary compounds K12Sn17 and K4Sn9, were characterized for the first time by 119Sn solid‐state NMR spectroscopy.  相似文献   

3.
The binary germanides M12Ge17 and M4Ge9 (M ? Na, K, Rb, Cs) and the stannides M12Sn17 and M4Sn9 (M ? K, Rb, Cs) were identified by a combination of direct synthesis, thermogravimetric analysis, vibrational spectroscopy, X-ray powder data and single crystal structure analysis. The M12E17 phases contain the cluster anions [E9]4? and [E4]4? in the ratio 1:2, forming a hierarchical structure with the cluster anions at the atomic positions of the hexagonal Laves phase MgZn2. Like the M4E4 phases, the M4Ge9 compounds are hierarchical derivatives of the cubic Cr3Si structure but with [Ge9]4? anions. The thermogravimetric analyses give strong evidence for the existence of at least one more phase with [E9]4? and [E4]4? clusters and of the clathrate phases M6E136 in addition to the well-known M8E442 chlathrates.  相似文献   

4.
The endohedral stannaspherene cluster anion [Ir@Sn12]3? was synthesized in two steps. The reaction of K4Sn9 with [IrCl(cod)]2 (cod: 1,5‐cyclooctadienyl) in ethylenediamine (en) solution first yielded the [K(2,2,2‐crypt)]+ salt (2,2,2‐crypt: 4,7,13,16,21,24‐hexaoxa‐1,10‐diazabicyclo[8.8.8]hexacosane) of the capped cluster anion [Sn9Ir(cod)]3?. Subsequently, crystals of this compound were dissolved in en, followed by the addition of triphenylphosphine or 1,2‐bis(diphenylphosphino)ethane and treatment at elevated temperatures. [Ir@Sn12]3? was obtained and characterized as the [K(2,2,2‐crypt)]+ salt. The isolation of [Sn9Ir(cod)]3? as an intermediate product establishes that the formation of the stannaspherene [Ir@Sn12]3? occurs through the oxidation of [Sn9Ir(cod)]3?. Among the structurally characterized tetrel cluster anions, [Ir@Sn12]3? is a unique example of a stannaspherene, and one of the rare spherical clusters encapsulating a metal atom that is not a member of Group 10. Single‐crystal structure determination shows that the novel Zintl ion cluster has nearly perfect icosahedral Ih point symmetry.  相似文献   

5.
Two types of 4f–3d thiostannates with general formula [Hen]2[Ln(en)4(CuSn3S9)] ? 0.5 en ( Ln1 ; Ln=La, 1 ; Ce, 2 ) and [Hen]4[Ln(en)4]2[Cu6Sn6S20] ? 3 en ( Ln2 ; Ln=Nd, 3 ; Gd, 4 ; Er, 5 ) were prepared by reactions of Ln2O3, Cu, Sn, and S in ethylenediamine (en) under solvothermal conditions between 160 and 190 °C. However, reactions performed in the range from 120 to 140 °C resulted in crystallization of [Sn2S6]4? compounds and CuS powder. In 1 and 2 , three SnS4 tetrahedra and one CuS3 triangle are joined by sharing sulfur atoms to form a novel [CuSn3S9]5? cluster that coordinates to the Ln3+ ion of [Ln(en)4]3+ (Ln=La, Ce) as a monodentate ligand. The [CuSn3S9]5? unit is the first thio‐based heterometallic adamantane‐like cluster coordinating to a lanthanide center. In 3 – 5 , six SnS4 tetrahedra and six CuS3 triangles are connected by sharing common sulfur atoms to form the ternary [Cu6Sn6S20]10? cluster, in which a Cu6 core is enclosed by two Sn3S10 fragments. The topological structure of the novel Cu6 core can be regarded as two Cu4 tetrahedra joined by a common edge. The Ln3+ ions in Ln1 and Ln2 are in nine‐ and eightfold coordination, respectively, which leads to the formation of the [CuSn3S9]5? and [Cu6Sn6S20]10? clusters under identical synthetic conditions. The syntheses of Ln1 and Ln2 show the influence of the lanthanide contraction on the quaternary Ln/Cu/Sn/S system in ethylenediamine. Compounds 1 – 5 exhibit bandgaps in the range of 2.09–2.48 eV depending on the two different types of clusters in the compounds. Compounds 1 , 3 , and 4 lost their organic components in the temperature range of 110–350 °C by multistep processes.  相似文献   

6.
For decades the chemistry of polyhalides was dominated by polyiodides and more recently also by an increasing number of polybromides. However, apart from a few structures containing trichloride anions and a single report on an octachloride dianion, [Cl8]2?, polychlorine compounds such as polychloride anions are unknown. Herein, we report on the synthesis and investigation of large polychloride monoanions such as [Cl11]? found in [AsPh4][Cl11], [PPh4][Cl11], and [PNP][Cl11]?Cl2, and [Cl13]? obtained in [PNP][Cl13]. The polychloride dianion [Cl12]2? has been obtained in [NMe3Ph]2[Cl12]. The novel compounds have been thoroughly characterized by NMR spectroscopy, single‐crystal Raman spectroscopy, and single‐crystal X‐ray diffraction. The assignment of their spectra is supported by molecular and periodic solid‐state quantum‐chemical calculations.  相似文献   

7.
Electronic Structure of Structural Open Derivatives of the [Mo6X14]2?-Cluster: [Mo5Cl13]2? and [Mo4I11]2? The electronic structure of structural open derivatives of the [Mo6X14]2?-cluster [Mo5Cl13]2? and [Mo4I11]2? has been studied by the EHMO method. In [Mo5Cl13]2? 9 occupied MO's with dominant Mo4d character are responsible for the formation of the 8 metal-metal bonds. In [Mo4I11]2? the stronger covalent character of the Mo? I bonds affects the localization and the energy of molecular orbitals and also the charge distribution. The metal-metal bonds are formed by 8 MO's containing considerable participation of halogen AO's contrary to the chloride cluster. There is no bonding between the Mo atoms at the wing tips of the Mo4 butterfly and the reason for decreasing the dihedral angle between the Mo3 planes in [Mo4I11]2? compared with the octahedral angle is apparently the stabilization of the whole system (Mo? Mo and Mo? I bonds). The unpaired electron occupies in both clusters a slightly antibonding (with regard to the Mo? Mo bonds) orbital.  相似文献   

8.
In this work, the largest heterometallic supertetrahedral clusters, [Zn6Ge16]4? and [Cd6Ge16]4?, were directly self‐assembled through highly‐charged [Ge4]4? units and transition metal cations, in which 3‐center–2‐electron σ bonding in Ge2Zn or Ge2Cd triangles plays a vital role in the stabilization of the whole structure. The cluster structures have an open framework with a large central cavity of diameter 4.6 Å for Zn and 5.0 Å for Cd, respectively. Time‐dependent HRESI‐MS spectra show that the larger clusters grow from smaller components with a single [Ge4]4? and ZnMes2 units. Calculations performed at the DFT level indicate a very large HOMO–LUMO energy gap in [M6Ge16]4? (2.22 eV), suggesting high kinetic stability that may offer opportunities in materials science. These observations offer a new strategy for the assembly of heterometallic clusters with high symmetry.  相似文献   

9.
Reactions of ZnI2L2 (where L=[HC(PPh2NPh)]) with solutions of the Zintl phase K4Ge9 in liquid ammonia lead to retention of the Zn−Zn bond and formation of the anion [(η4‐Ge9)Zn−Zn(η4‐Ge9)]6−, representing the first complex with a Zn−Zn unit carrying two cluster entities. The trimeric anion [(η4‐Ge9)Zn{μ211Ge9)}Zn(η4‐Ge9)]8− forms as a side product, indicating that oxidation reactions also take place. The reaction of Zn2Cp*2 (Cp*=1,2,3,4,5‐pentamethylcyclopentadienyl) with K4Ge9 in ethylenediamine yielded the linear polymeric unit {[Zn[μ241Ge9)]}2− with the first head‐to‐tail arrangement of ten‐atom closo ‐clusters. All anions were obtained and structurally characterized as [A (2.2.2‐crypt)]+ salts (A =K, Rb). Copious computational analyses at a DFT‐PBE0/def2‐TZVPP/PCM level of theory confirm the experimental structures and support the stability of the two hypothetical ten vertex cluster fragments closo ‐[Ge9Zn]2− and (paramagnetic) [Ge9Zn]3−.  相似文献   

10.
Inorganic pentaprismane : The unusual structure of the anion [Co@Ge10]3?, which was obtained by the reaction of K4Ge9 with [Co(C8H12)(C8H13)] in ethylenediamine, raises questions about chemical bonding in the anion. The Zintl ion cluster has virtual D5h symmetry and is a unique example of a ligand‐free cluster that is not a deltahedron. The delocalized chemical bonding is represented in the picture by one of the bonding orbitals of the anion.

  相似文献   


11.
The addition of Sn and Zn ions to [Ge9] clusters by reaction of [Ge9]4? with SnPh2Cl2, ZnCp*2 (Cp*=pentamethylcyclopentadienyl), or Zn2[HC(Ph2P=NPh)2]2 is reported. The resulting Sn‐ and Zn‐bridged clusters [(Ge9)M(Ge9)]q? (M=Sn, q=4; M=Zn, q=6) display various coordination modes. The M atoms that coordinate to the open square of a C4v‐symmetric [Ge9] cluster form strong covalent multicenter M?Ge bonds, in contrast to the M atoms coordinating to triangular cluster faces. Molecular orbital analyses show that the M atoms of the Ge9M fragments coordinate to a second [Ge9] cluster with similar orbitals but in different ways. The [Ge9Sn]2?unit donates two electrons to the triangular face of a second [Ge9]2? cluster with D3h symmetry, whereas [Ge9Zn]2?acts as an electron acceptor when interacting with the triangular face of a D3h‐symmetric [Ge9]4? unit.  相似文献   

12.
The search for novel ternary intermetallic compounds with specific structures is still a challenge. We found that the two-step synthesis giving a typical alloy in the first step followed by the reaction of this alloy with alkali metals is a promising route. The intermetallic compounds K12Pd0.47Sn17 and K4RhPb9 were synthesized by high-temperature reactions of preformed Pd-Sn and Rh-Pb alloys with K acting as “metal scissors” and were characterized by means of single crystal and powder X-ray diffractometry. The salt-like ternary phases K12Pd0.47Sn17 and K4RhPb9 contain novel endohedrally filled intermetalloid clusters [Pd@Sn9]4– and [Rh@Pb9]4–, respectively. The crystal packing of the products corresponds to filled variants of the binary Zintl phases K12Sn17 and K4Pb9, respectively. The crystal structure of K12Pd0.47Sn17 can be regarded as a hierarchical replacement variant of the hexagonal Laves phase MgZn2, with [Pd@Sn9]4–/[Sn9]4– and [Sn4]4– on Mg and Zn positions, respectively, whereas the packing of [Rh@Pb9]4– clusters in K4RhPb9 is hcp. K12Pd0.47Sn17 was characterized by Raman spectroscopy. For the first time Raman modes typical for endohedrally filled [Pd@Sn9]4– clusters are observed and in accordance with quantum-chemical calculations. In addition Raman spectroscopy shows also the presence of filled Pd@Sn9 clusters in a phase of nominal composition “Na12Pd2Sn17”. The results are discussed with respect to the volume increase due the incorporation of transition metal atoms.  相似文献   

13.
The extraction of the silicide K12Si17 with liquid ammonia in the presence of a sequestering agent and AuPPh3Cl or Zn(Cp*)2 led to crystals of the solvate compound K8[Si4][Si9] · (NH3)14.6, which was characterized by single‐crystal X‐ray diffraction. It is the first compound with an isolated and ligand‐free [Si4]4– cluster obtained from solution. It also contains one [Si9]4– cluster per formula unit, whereas the precursor K12Si17 is built from [Si4]4– and [Si9]4– clusters with a 2:1 ratio.  相似文献   

14.
Reaction of cyclooctatetraene (COT) iron(II) tricarbonyl, [Fe(cot)(CO)3], with one equivalent of K4Ge9 in ethylenediamine (en) yielded the cluster anion [Ge8Fe(CO)3]3? which was crystallographically‐characterized as a [K(2,2,2‐crypt)]+ salt in [K(2,2,2‐crypt)]3[Ge8Fe(CO)3]. The chemically‐reduced organometallic species [Fe(η3‐C8H8)(CO)3]? was also isolated as a side‐product from this reaction as [K(2,2,2‐crypt)][Fe(η3‐C8H8)(CO)3]. Both species were further characterized by EPR and IR spectroscopy and electrospray mass spectrometry. The [Ge8Fe(CO)3]3? cluster anion represents an unprecedented functionalized germanium Zintl anion in which the nine‐atom precursor cluster has lost a vertex, which has been replaced by a transition‐metal moiety.  相似文献   

15.
Polyanionic silicon clusters are provided by the Zintl phases K4Si4, comprising [Si4]4− units, and K12Si17, consisting of [Si4]4− and [Si9]4− clusters. A combination of solid‐state MAS‐NMR, solution NMR, and Raman spectroscopy, electrospray ionization mass spectrometry, and quantum‐chemical investigations was used to investigate four‐ and nine‐atomic silicon Zintl clusters in neat solids and solution. The results were compared to 29Si isotope‐enriched samples. 29Si‐MAS NMR and Raman shifts of the phase‐pure solids K4Si4 and K12Si17 were interpreted by quantum‐chemical calculations. Extraction of [Si9]4− clusters from K12Si17 with liquid ammonia/222crypt and their transfer to pyridine yields in a red solid containing Si9 clusters. This compound was characterized by elemental and EDX analyses and 29Si‐MAS NMR and Raman spectroscopy. Charged Si9 clusters were detected by 29Si NMR in solution. 29Si and 1H NMR spectra reveal the presence of the [H2Si9]2− cluster anion in solution.  相似文献   

16.
Polyanionic silicon clusters are provided by the Zintl phases K4Si4, comprising [Si4]4− units, and K12Si17, consisting of [Si4]4− and [Si9]4− clusters. A combination of solid‐state MAS‐NMR, solution NMR, and Raman spectroscopy, electrospray ionization mass spectrometry, and quantum‐chemical investigations was used to investigate four‐ and nine‐atomic silicon Zintl clusters in neat solids and solution. The results were compared to 29Si isotope‐enriched samples. 29Si‐MAS NMR and Raman shifts of the phase‐pure solids K4Si4 and K12Si17 were interpreted by quantum‐chemical calculations. Extraction of [Si9]4− clusters from K12Si17 with liquid ammonia/222crypt and their transfer to pyridine yields in a red solid containing Si9 clusters. This compound was characterized by elemental and EDX analyses and 29Si‐MAS NMR and Raman spectroscopy. Charged Si9 clusters were detected by 29Si NMR in solution. 29Si and 1H NMR spectra reveal the presence of the [H2Si9]2− cluster anion in solution.  相似文献   

17.
We report the characterization of the compound [K([2.2.2]crypt)]4[In8Sb13], which proves to contain a 1:1 mixture of [Sb@In8Sb12]3? and [Sb@In8Sb12]5?. The tri‐anion displays perfect Th symmetry, the first completely inorganic molecule to do so, and contains eight equivalent In3+ centers in a cube. The gas‐phase potential energy surface of the penta‐anion has eight equivalent minima where the extra pair of electrons is localized on one In+ center, and these minima are linked by low‐lying transition states where the electron pair is delocalized over two adjacent centers. The best fit to the electron density is obtained from a model where the structure of the 5? cluster lies close to the gas‐phase transition state.  相似文献   

18.
Reactions of [K(crypt‐222)]2(TlBi3)⋅0.5 en ( 1 b ) with [Ru(cod)(H2CC(Me)CH2)2] ( A ) in 1,2‐diaminoethane (en) led to the formation of two compounds with new bismuth‐rich cluster anions, [K(crypt‐222)]3[Bi9{Ru(cod)}2]⋅1.5 en ( 2 ) and [K(crypt‐222)]2[Tl2Bi6{Ru(cod)}]⋅2 tol ( 3 ), alongside the salt of a binary nido cluster, [K(crypt‐222)]3(Tl4Bi5)⋅2 en ( 4 ). The anions in 2 and 3 are two further examples of rare heterometallic clusters containing Ru atoms. As one cod ligand is retained on each Ru atom in both clusters, the anions may be viewed as intermediates on the way towards larger, ligand‐free intermetalloid clusters. Quantum‐chemical studies provided insight into the bonding situation in these clusters. According to these studies, the anion of 2 features both electron‐precise and electron‐deficient parts. Electrospray ionization mass spectrometry analysis indicated that the clusters undergo stepwise fragmentation.  相似文献   

19.
Reaction of the binary Zintl anion (Sn2Sb2)2? with the β‐diketiminato complex [LCu(NCMe)] (L=nacnac=[(N(C6H3iPr2‐2,6)C(Me))2CH]?) in ethylenediamine or DMF affords the ternary cluster dimer {[CuSn5Sb3]2?}2 ( 1 ) as its [K(crypt‐222)]+ salt. The chemical formulation of 1 is supported by energy‐dispersive X‐ray spectroscopy (EDX) and quantum chemical calculations. Each monomeric part of the dimer represents a trimetallic “[CuSn5Sb3]2?” cluster, with an architecture in between a tricapped trigonal prism and a capped square antiprism. As shown by quantum chemical investigations, the presence of Sb atoms and, in particular, of Cu atoms in the cluster skeleton makes the monomeric unit behave like an inhomogeneous superatom, which clearly prefers to dimerize, thereby producing a relatively short, yet virtually non‐bonding Cu???Cu distance.  相似文献   

20.
The compound [K(18‐crown‐6)]8[Ge9=Ge9=Ge9=Ge9] ˙ 8en ( 1 ) featuring a [Ge9=Ge9=Ge9=Ge9]8‐cluster anion was synthesized from K4Ge9 for the first time. The X‐ray single crystal analysis shows that, in many respects such as bond connection and packing style, compound 1 is quite different from the previously reported compounds [Rb(18‐crown‐6)]8[Ge9=Ge9=Ge9=Ge9] ˙ 2en ( 2 ) and [Rb(18‐crown‐6)]8[Ge9=Ge9=Ge9=Ge9] ˙ 6en ( 3 ). Crystal packing of 1 gives strong indications that the highly charged nano‐rods self assembly in a hexagonal rod packing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号