首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We report the regioselective and enantioselective formal hydroamination of unsymmetrical internal alkenes catalyzed by a copper catalyst ligated by DTBM‐SEGPHOS. The regioselectivity of the reaction is controlled by the electronic effects of ether, ester, and sulfonamide groups in the homoallylic position. The observed selectivity underscores the influence of inductive effects of remote substituents on the selectivity of catalytic processes occurring at hydrocarbyl groups, and the method provides direct access to various 1,3‐aminoalcohol derivatives with high enantioselectivity.  相似文献   

2.
We report herein the use of a dual catalytic system comprising a Lewis base catalyst such as quinuclidin‐3‐ol or 4‐dimethylaminopyridine and a photoredox catalyst to generate carbon radicals from either boronic acids or esters. This system enabled a wide range of alkyl boronic esters and aryl or alkyl boronic acids to react with electron‐deficient olefins via radical addition to efficiently form C−C coupled products in a redox‐neutral fashion. The Lewis base catalyst was shown to form a redox‐active complex with either the boronic esters or the trimeric form of the boronic acids (boroxines) in solution.  相似文献   

3.
《化学:亚洲杂志》2017,12(17):2271-2277
Development of inexpensive, easily prepared, non‐toxic, and efficient catalysts for the cycloaddition of CO2 with epoxides to synthesize five‐membered cyclic carbonates is a very attractive topic in the field of CO2 transformation. In this work, we conducted the first work on the cycloaddition of CO2 with epoxides to produce cyclic carbonates catalyzed by a binary catalyst system consisting of KI and boron phosphate (BPO4), which are both inexpensive and non‐toxic, and various corresponding cyclic carbonates could be produced with high yields (93–99 %) at 110 °C with a CO2 pressure of 4 MPa under solvent‐free conditions. In the BPO4/KI catalyst system, BPO4, a Brønsted and Lewis acid hybrid, played the role of activating the epoxy ring through the formation of hydrogen bonds with Brønsted acidic sites and the interaction with Lewis acidic sites simultaneously, and thus enhanced the activity of KI for the cycloaddition of CO2 with epoxides significantly. Additionally, the activity of the BPO4/KI catalyst system showed no noticeable decrease after being reused five times, indicating that the BPO4 was stable under the reaction conditions.  相似文献   

4.
Synthesis of poly(thiocarbonate)s from the copolymerization of epoxides and carbon disulfide (CS2) remains a tough challenge, due to inevitable oxygen‐sulfur atom scrambling process. In this work, we utilized the oxygen‐sulfur exchange reaction (O‐S ER) to synthesize a random copolymer with monothiocarbonate and trithiocarbonate units from CS2 and phenyl glycidyl ether (PGE) via metal‐free Lewis pairs. The copolymers contained monothiocarbonate and trithiocarbonate units of which the molar fraction could be tuned by varying either the types of Lewis pairs or the reaction temperature. Keeping track on the intermediate provided an insight in the process of O‐S ER and thus gave a hint to control the product structure. Production and consumption of phenyl thioglycidyl ether was the key process to regulate the chain structure. Remarkably, the oxygen atoms of PGE could be excluded out of the chain, resulting in the nearly complete production of poly(trithiocarbonate)s. Correspondingly, the refractive index of this kind of copolymer could be regulated in a wide range of 1.73—1.79 (at 590 nm).  相似文献   

5.
An isothiourea‐catalyzed enantioselective Michael addition of aryl ester pronucleophiles to vinyl bis‐sulfones via C(1)‐ammonium enolate intermediates has been developed. This operationally simple method allows the base‐free functionalization of aryl esters to form α‐functionalized products containing two contiguous tertiary stereogenic centres in excellent yield and stereoselectivity (all ≥99:1 er). Key to the success of this methodology is the multifunctional role of the aryloxide, which operates as a leaving group, Brønsted base, Brønsted acid and Lewis base within the catalytic cycle. Comprehensive mechanistic studies, including variable time normalization analysis (VTNA) and isotopologue competition experiments, have been carried out. These studies have identified (i) orders of all reactants; (ii) a turnover‐limiting Michael addition step, (iii) product inhibition, (iv) the catalyst resting state and (v) catalyst deactivation through protonation.  相似文献   

6.
pH‐Responsive homopolymers and copolymers with naphthoic acid side groups were synthesized via base‐assisting living cationic polymerization. To this end, the feasibility of the living cationic polymerization of ethyl 6‐[2‐(vinyloxy)ethoxy]‐2‐naphthoate (EVEN) was first examined using a base‐assisting initiating system. Et1.5AlCl1.5 as a Lewis acid catalyst induced the living cationic polymerization of EVEN in the presence of ethyl acetate or 1,4‐dioxane in CH2Cl2 at 0 °C. In contrast, the use of naphthoxyethyl vinyl ether (NpOVE), which is a nonsubstituted counterpart, resulted in a poorly controlled polymerization under these conditions. The presence of the carboxy ester was most likely critical in preventing side reactions. A subsequent alkaline hydrolysis of the side‐chain esters quantitatively yielded a carboxy‐containing polymer. Aqueous solutions of this polymer underwent pH‐driven phase separation at pH 7.0. Well‐defined random and block copolymers were also prepared with various functional segments, and their stimuli‐responsive behaviors were investigated in terms of solution transmittance and aggregate size. Block copolymers containing two different pH‐responsive segments formed micelle‐like structures between the two phase‐separated pH values, and dual stimuli‐responsive copolymers containing a pH‐responsive polyacid segment and a thermosensitive segment self‐assembled in the water in response to both the pH and temperature. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 5239–5247  相似文献   

7.
In today's world, a major scientific challenge is preserving the delicate balance between industrial growth and a pollutant free terrestrial environment. Thus, “greener” syntheses of commodity materials, capture and utilization of gaseous industrial by‐products have become research areas of increasing significance. The pioneering work of Inoue showed a potential utilization of CO2, a major petrochemical by‐product, and opened a new field of research. Inoue discovered the (porphyrin)Al(III)X catalyst systems, (X=Cl? or alkoxide) which copolymerize CO2 with epoxides to produce polycarbonates. This catalyst can also copolymerize epoxides and cyclic anhydrides to form polyesters. The current record describes our research aimed towards mechanistic understanding and further developments of (porphyrin)M(III)X catalyst systems. This detailed account shows the influence of the porphyrin ligands (tetraphenylporphyrin (TPP), octaethylporphyrin (OEP), tetrakis‐pentafluorophenylporphyrin (TFPP)), metal centers (Al, Cr, and Co) and Lewis base co‐catalysts on the individual reaction steps and equilibria involved in the copolymerization processes.  相似文献   

8.
设计合成了一系列由碳链长度可调节的Br?nsted酸中心阳离子及Lewis碱中心阴离子构成的酸性离子液体,,并应用于二氧化碳与环氧化合物的偶联反应合成环碳酸酯。考察了离子液体结构以及温度、压力和催化剂用量等参数的影响。结果表明,具有长碳链的离子液体表现出高催化活性及可重复使用性能。离子液体的酸性影响催化活性。  相似文献   

9.
A novel and catalyst‐free multicomponent reaction with cyclic tertiary amines, electron‐deficient aryl halides or heteroaromatic halides, and Na2S enabled by facile C−N bond cleavage of the cyclic tertiary amines was developed. This direct and operationally simple method can be applied with a wide range of functional groups and provides an efficient and rapid approach to potentially drug‐like products containing amine, azaarene, thioether, or phenol ether functionalities in good to excellent yields. The utility of this method was demonstrated by the rapid synthesis of the analgesic ruzadolane.  相似文献   

10.
It is a great challenge to rationally integrate multiple reactive sites into a composite material with confined nanospace, which can be applied as a nanoreactor to facilitate targeting catalytic reaction. In this work, an ionic metalloporphyrin has been encapsulated in situ into ZIF‐8 for a solvent‐free synthesis of cyclic carbonates from CO2 and epoxides without any co‐catalyst under 1 atm CO2.  相似文献   

11.
《中国化学》2018,36(3):187-193
The production of fine chemicals using CO2 as C1 building block through inexpensive heterogeneous catalysts with high efficiency under low pressure is challenging. Herein we propose for the first time the utilization of a multifunctional heterogeneous zinc‐modified HZSM‐5 (ZnHZSM‐5) catalyst for upgrading CO2 by incorporation into cyclic carbonates from CO2 and epoxides. Owing to the nice surface properties such as abundant Lewis acid, Brønsted acid and Lewis base sites, large surface area, and plenty of micropores, CO2 could be concentrated and well activated in ZnHZSM‐5 verified by CO2‐TPD, TG‐MS, etc. Meanwhile, the epoxides were also activated through metal center and hydrogen bond. Therefore, the reaction can easily assemble at the catalyst interface and show exceptional performance, affording the aimed products with high yield of up to 99% in the presence of commercial tetra‐n‐propylammonium bromide (90% in kilogram scale with 0.004 mol% ZnHZSM‐5 and 0.015 mol% nPr4NBr).  相似文献   

12.
In this report, we have developed a sustainable protocol for the synthesis of aromatic esters by a carbonylative method using di‐μ‐chlorobis [5‐hydroxy‐2‐[1‐(hydroxyimino‐?N) ethyl] phenyl‐?C] palladium (II) dimer ( 1 ) catalyst in PEG‐400 as a greener and recyclable solvent. The reaction is carried out at room temperature using CO in a balloon. Good to excellent yield of various esters can be synthesize using this protocol. Direct insertion of CO moiety leads to the high atom and step economy. Compared to previous protocol this phosphine free approach for the synthesis of aromatic esters provides high Turnover Number (TON) and Turnover Frequency (TOF). Developed approach has an alternative route for use of conventional palladium precursor with high conversion and selectivity. The catalyst system and product can easily be separated using diethyl ether as a solvent. The Pd/PEG‐400 system could be reused up to a fifth consecutive cycle without any loss of its activity and selectivity.  相似文献   

13.
A simple and efficient process to cyclize triols containing a 1,2-diol functionality with a pendant hydroxyl group is presented. The one-pot procedure converts the 1,2-diol into an ortho ester in situ, which upon treatment with a Lewis acid generates a cyclic acetoxonium intermediate. This intermediate is subsequently trapped by the pendant hydroxyl group to generate a cyclic ether. The stereochemistry of the 1,2-diol is transferred to the product with complete fidelity (inversion at the site of cyclization), and the reaction proceeds with high regioselectivity. The process is akin to the Lewis acid-catalyzed intramolecular ring-opening of epoxides with hydroxyl groups yielding cyclic ethers of various sizes with regio- and stereochemical control.  相似文献   

14.
Heterogeneous, metal, single‐site catalysts often exhibit higher catalytic performance than other catalysts because of their maximized atom efficiency of 100 %. Reported herein is a precoordination/solvothermal polymerization strategy to fabricate a stable mononuclear Pd‐metalized porous organic polymer catalyst (Pd@POP). Pd@POP was easy to use in regioselective organic reactions because the internal structure of this Pd@POP can be easily modified. The catalyst was used to solve the intractable regioselectivity problems of Heck reactions. Pd@POP‐9 can efficiently activate the ends of olefins, thereby leading to high selectivity for substitution at the external position. To understand the reason underlying the high selectivity and activity of the catalyst, the systemic characterization of Pd@POP‐9 and density‐functional theory calculations were conducted. This Heck reaction is the first to be catalyzed by a recyclable mononuclear metal catalyst with unprecedented catalytic activity and regioselectivity.  相似文献   

15.
The search for environmentally benign and economic process has been the impetus for much of the research involving epoxide and carbon dioxide coupling in view of the so called "green chemistry" and" atom economy ", since CO2 is a renewable resource and can be used as a safe and cheap C 1 building block to synthesize useful organic compounds without producing any coproducts.[1-2] One of the most attractive synthetic goals starting from carbon dioxide is the chemical fixation of CO2 onto epoxide to afford the five-membered cyclic carbonates (Scheme 1),which are excellent aprotic polar solvents and are used extensively as intermediates in the production of pharmaceuticals and fine chemicals.[3] In the last decades of the twentieth century numerous catalytic systems have been developed for this transformation. While some advances have been obtained, all suffer from either low catalyst stability/reactivity, the need for co-solvent, or the requirement for high pressure and/or catalyst costing expensive.[4] Therefore, to find an effective,not exrensive, environmentally benign and economic catalyst system is urgent.In this paper, chemical fixation of CO2 with mono-substituted terminal epoxides or cyclohexene oxide to form cyclic carbonates under the ZnCl2/[BMIm]Br Catalyst System without using additional organic solvents was achieved in excellent selectivity (>98%) and TOF(5410h-1) Besides,the pure cis-cyclic carbonate of cyclohexene oxide was obtained in this catalyst system.It was important to note that the catalyst could be recovered by simple vacuum distillation of the corresponding cyclic carbonates and could be used six times almost without losing its catalytic activity and selectivity. The catalyst system was found to be applicable to a variety of terminal epoxides and cyclohexene oxide, forming the corresponding cyclic carbonates in very high TOF and more than 98% selectivity. Based on the obtained results, we also propose the plausible mechanism for this chemical fixation reaction of CO2.  相似文献   

16.
随着科学技术的进步和工业化的发展,大量化石燃料被消耗,大气中二氧化碳浓度急剧增加,导致温室效应加剧,严重威胁到人类的生存和发展。基于可持续发展的思想,利用储量丰富且廉价的二氧化碳作为 C1资源替代有毒的气体(如一氧化碳和光气等)制备具有广泛应用的环状碳酸酯,不仅满足“绿色化学”的要求,而且符合“原子经济性”的原则。迄今为止,大量用于催化二氧化碳和环氧化物环加成反应合成环状碳酸酯的催化剂,包括均相催化剂(如金属卤化物、有机碱、离子液体和金属配合物),多相催化剂(如金属氧化物、负载型催化剂、有机聚合物、金属有机框架材料和碳材料等)被报道。其中金属催化剂占主导地位,大多表现出优异的催化活性。然而,目前可供开采的金属矿越来越少,大多数金属的回收再利用率较低,重金属污染日趋严重。因此,开发新型、廉价、绿色、高效、循环性和稳定性好的非金属催化剂具有重要意义。
  本文主要介绍了近3年以来用于催化二氧化碳和环氧化物环加成反应合成环状碳酸酯的非金属催化剂,主要包括有机碱、离子液体、固载型催化剂、有机聚合物和碳材料等。概括了不同种类催化剂的设计思想及其催化反应机理,重点阐述了分子内以及分子间各种功能基团的协同作用对环加成反应的影响。通过比较发现,具有“C–N=C”结构的有机碱活性相对较高,氢键给体和亲核物质都能与有机碱协同作用提高其催化活性;传统离子液体的活性一般不理想,氢键给体如羟基和羧基的引入有利于促进环加成反应,且多阳离子和多氢键给体功能化的离子液体表现出更高的催化活性;负载型催化剂中,载体和活性组分之间的协同作用有利于加速环加成反应的进行,多种功能基团负载和以共价键方式多层固载能更好地提高催化剂稳定性和催化活性;利用非烯烃化合物制得的活性组分位于主链的多孔有机聚合物,催化活性和稳定性大多高于活性组分位于侧链的烯烃聚合物;碳材料催化剂中,引入不饱和的 N物种(如伯胺和吡啶氮),有利于 CO2的吸附和活化,能促进环加成反应。此外,利用密度泛函的方法,计算模拟催化反应过程,能更好地揭示反应机理,并为设计和制备高效的催化剂提供理论指导。
  该领域目前面临的重要挑战是研发可以同时实现二氧化碳捕获和转化的新型、环保和高效非金属催化剂,终极目标是利用多孔催化材料在常温和常压下直接捕获工业废气中的二氧化碳,并利用捕获的二氧化碳实现环状碳酸酯的连续生产。基于协同催化的设计思想,利用多种基团功能化的策略合成高效吸附和活化二氧化碳以及开环活化环氧化物的非金属催化剂,有望实现上述目标。  相似文献   

17.
Synthesis of novel amphiphilic biodegradable block copolymers based on ethylene carbonate is reported in this study. Polyethylene glycol monomethyl ether (MeO‐PEO) and polyethylene glycol (PEG) of varying molar masses are used as macro‐initiator for ring‐opening polymerization of ethylene carbonate in the presence of sodium stannate trihydrate as a heterogeneous transesterification catalyst. Earlier elution of block copolymer from macro‐initiator in size exclusion chromatography (SEC) indicated the successful synthesis of the block copolymers. Ratios of both types of blocks are varied systematically. Liquid chromatography at critical conditions is used for the analysis of the non‐critical individual blocks, and if there are any critical segments that are not attached to the non‐critical block. To the best of our knowledge, this is the first report on the synthesis of ethylene carbonate‐based amphiphilic block copolymers. Chromatographic critical conditions of the ethylene carbonate polymer are also reported for the first time. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 1887–1893  相似文献   

18.
Frustrated Lewis pairs (FLPs) are now ubiquitous as metal-free catalysts in an array of different chemical transformations. In this paper we show that this reactivity can be transferred to a polymeric system, offering advantageous opportunities at the interface between catalysis and stimuli-responsive materials. Formation of cyclic carbonates from cyclic ethers using CO2 as a C1 feedstock continues to be dominated by metal-based systems. When paired with a suitable nucleophile, discrete aryl or alkyl boranes have shown significant promise as metal-free Lewis acidic alternatives, although catalyst reuse remains illusive. Herein, we leverage the reactivity of FLPs in a polymeric system to promote CO2/cyclic ether coupling catalysis that can be tuned for the desired epoxide or oxetane substrate. Moreover, these macromolecular FLPs can be reused across multiple reaction cycles, further increasing their appeal over analogous small molecule systems.

Polymeric frustrated Lewis pairs catalyse the coupling of epoxides and oxetanes with CO2 with high selectivity under mild CO2 pressures across multiple reaction cycles.  相似文献   

19.
In this work we have achieved epoxide to cyclic carbonate conversion using a metal‐free polymeric catalyst under ambient CO2 pressure (1.02 atm) using a balloon setup. The triazine containing polymer (CYA‐ANIS) was prepared from cyanuric chloride (CYA?Cl) and o‐dianisidine (ANIS) in anhydrous DMF as solvent by refluxing under the N2 gas environment. The presence of triazine and amine functional groups in the polymer results in the adsorption of CO2 up to 7 cc/g at 273 K. This inspired us to utilize the polymer for the conversion of a series of functionalised epoxides into their corresponding cyclic carbonates in the presence of tetrabutyl ammonium iodide (TBAI) as co‐catalyst. The product has wide range of applications like solvent in lithium ion battery, precursor for polycarbonate, etc. The catalyst was efficient for the conversion of different mono and di‐epoxides into their corresponding cyclic carbonates under atmospheric pressure in the presence of TBAI as co‐catalyst. The study indicates that epoxide attached with electron withdrawing groups (like, CH2Cl, glycidyl ether, etc.) displayed better conversion compared to simple alkane chain attached epoxides. This is mainly due to the stabilization of electron rich intermediates produced during the reaction (e. g. epoxide ring opening or CO2 incorporation into the halo‐alkoxide anion). This catalyst mixture was capable to maintain its reactivity up to five cycles without losing its activity. Post catalytic characterization clearly supports the heterogeneous and recyclable nature of the catalyst.  相似文献   

20.
The concentration of carbon dioxide (CO2) in the atmosphere is increasing at an alarming rate resulting in undesirable environmental issues. To mitigate this growing concentration of CO2, selective carbon capture and storage/sequestration (CCS) are being investigated intensively. However, CCS technology is considered as an expensive and energy‐intensive process. In this context, selective carbon capture and utilization (CCU) as a C1 feedstock to synthesize value‐added chemicals and fuels is a promising step towards lowering the concentration of the atmospheric CO2 and for the production of high‐value chemicals. Towards this direction, several strategies have been developed to convert CO2, a Greenhouse gas (GHG) into useful chemicals by forming C?N, C?O, C?C, and C?H bonds. Among the various CO2 functionalization processes known, the cycloaddition of CO2 to epoxides has gained considerable interest owing to its 100% atom‐economic nature producing cyclic carbonates or polycarbonates in high yield and selectivity. Among the various classes of catalysts studied for cycloaddition of CO2 to cyclic carbonates, porous metal‐organic frameworks (MOFs) have gained a special interest due to their modular nature facilitating the introduction of a high density of Lewis acidic (LA) and CO2‐philic Lewis basic (LB) functionalities. However, most of the MOF‐based catalysts reported for cycloaddition of CO2 to respective cyclic carbonates in high yields require additional co‐catalyst, say tetra‐n‐butylammonium bromide (TBAB). On the contrary, the co‐catalyst‐free conversion of CO2 using rationally designed MOFs composed of both LA and LB sites is relatively less studied. In this review, we provide a comprehensive account of the research progress in the design of MOF based catalysts for environment‐friendly, co‐catalyst‐free fixation of CO2 into cyclic carbonates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号