共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Jun Tang Tyler S. Mathis Narendra Kurra Asia Sarycheva Xu Xiao Mohamed N. Hedhili Qiu Jiang Husam N. Alshareef Baomin Xu Feng Pan Yury Gogotsi 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2019,131(49):18013-18019
MXenes are a class of two‐dimensional (2D) transition metal carbides, nitrides and carbonitrides that have shown promise for high‐rate pseudocapacitive energy storage. However, the effects that irreversible oxidation have on the surface chemistry and electrochemical properties of MXenes are still not understood. Here we report on a controlled anodic oxidation method which improves the rate performance of titanium carbide MXene (Ti3C2Tx, Tx refers to ‐F, =O, ‐Cl and ‐OH) electrodes in acidic electrolytes. The capacitance retention at 2000 mV s?1 (with respect to the lowest scan rate of 5 mV s?1) increases gradually from 38 % to 66 % by tuning the degree of anodic oxidation. At the same time, a loss in the redox behavior of Ti3C2Tx is evident at high anodic potentials after oxidation. Several analysis methods are employed to reveal changes in the structure and surface chemistry while simultaneously introducing defects, without compromising electrochemically active sites, are key factors for improving the rate performance of Ti3C2Tx. This study demonstrates improvement of the electrochemical performance of MXene electrodes by performing a controlled anodic oxidation. 相似文献
4.
5.
6.
7.
Weikang Wang Haimin Zhang Shengbo Zhang Yanyan Liu Guozhong Wang Chenghua Sun Huijun Zhao 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2019,131(46):16797-16803
As a metal‐free nitrogen reduction reaction (NRR) photocatalyst, g‐C3N4 is available from a scalable synthesis at low cost. Importantly, it can be readily functionalized to enhance photocatalytic activities. However, the use of g‐C3N4‐based photocatalysts for the NRR has been questioned because of the elusive mechanism and the involvement of N defects. This work reports the synthesis of a g‐C3N4 photocatalyst modified with cyano groups and intercalated K+ (mCNN), possessing extended visible‐light harvesting capacity and superior photocatalytic NRR activity (NH3 yield: 3.42 mmol g?1 h?1). Experimental and theoretical studies suggest that the ‐C≡N in mCNN can be regenerated through a pathway analogous to Mars van Krevelen process with the aid of the intercalated K+. The results confirm that the regeneration of the cyano group not only enhances photocatalytic activity and sustains the catalytic cycle, but also stabilizes the photocatalyst. 相似文献
8.
9.
10.
11.
12.
Yonglong Li Yanfang Hu Faxing Shi Haixia Li Wei Xie Jun Chen 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2019,131(27):9147-9151
Bifunctional Au@Ni core–satellite nanostructures synthesized by a one‐step assembly method were employed for in situ surface‐enhanced Raman spectroscopic (SERS) monitoring of Ni‐catalyzed C?C bond‐forming reactions. Surprisingly, the reaction that was thought to be an Ullmann‐type self‐coupling reaction, was found to be a cross‐coupling reaction proceeding by photoinduced aromatic C?H bond arylation. In situ SERS monitoring enabled the discovery, and a series of biphenyl compounds were synthesized photocatalytically, and at room temperature, using cheap Ni nanoparticle catalysts. 相似文献
13.
《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2018,130(18):5075-5079
Reported here is the chelate effect as a design principle for tuning heterogeneous catalysts for electrochemical CO2 reduction. Palladium functionalized with a chelating tris‐N‐heterocyclic carbene (NHC) ligand (Pd‐timtmbMe) exhibits a 32‐fold increase in activity for electrochemical reduction of CO2 to C1 products with high Faradaic efficiency (FEC1=86 %) compared to the parent unfunctionalized Pd foil (FE=23 %), and with sustained activity relative to a monodentate NHC‐ligated Pd electrode (Pd‐mimtmbMe). The results highlight the contributions of the chelate effect for tailoring and maintaining reactivity at molecular‐materials interfaces enabled by surface organometallic chemistry. 相似文献
14.
15.
16.
17.
18.
19.
20.