首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Silver‐Gold alloy/diamond like carbon (Ag‐Au/DLC) nanocomposite films were prepared by co‐deposition of RF‐sputtering and RF‐PECVD on glass substrates by using acetylene gas and silver‐gold target. The deposition process was carried out at room temperature in one minute with the variable parameters of initial pressures and RF powers. X‐ray diffraction analysis demonstrated the formation of Ag/Au alloy nanoparticles with a face‐centered cubic (FCC) structure. Localized surface plasmon and optical properties of Ag‐Au alloy nanoparticles were studied by UV‐visible spectrophotometry which showed that increasing RF power and initial pressure cause a redshift in all samples. Moreover, the effect of RF power and initial pressure on the size and shape of nanoparticles were studied by 2D Atomic force microscopy images. Energy dispersive X‐ray spectroscopy revealed the formation of Ag‐Au/DLC nanoparticles and the percentages of C, Ag, Au and O in all samples. The applied method for Ag/Au alloy preparation is the one step and low‐cost method which makes the samples ready for sensing application.  相似文献   

2.
The O‐terminated ZnO(000‐1) surface and Mn/ZnO(000‐1) interface have been investigated by synchrotron radiation photoemission spectroscopy (SRPES), low energy electron diffraction (LEED) and X‐ray photoelectron spectroscopy (XPS) systematically. Our results show that ordered O‐polar ZnO(000‐1) surface can be prepared by annealing in an oxygen ambience and this polar surface expresses good chemical stability. At room temperature, metallic Mn film is deposited onto the cleaned ZnO(000‐1)surface and grows in a layer‐by‐layer mode. During the process of Mn film deposition a downward Fermi level movement is observed, and the final resultant Schottky barrier height is 1.07 ± 0.05 eV. High temperature annealing is performed and the interfacial reaction happens evidently. The interfacial chemical reaction and the effect of interfacial dipole layer have been briefly discussed. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
This perspective article aims to underline how cutting‐edge synchrotron radiation spectroscopies such as extended X‐ray absorption spectroscopy (EXAFS), X‐ray absorption near edge structure (XANES), high resolution fluorescence detected (HRFD) XANES, X‐ray emission spectroscopy (XES) and resonant inelastic X‐ray scattering (RIXS) have played a key role in the structural and electronic characterization of Ti‐based catalysts and photocatalysts, representing an important additional value to the outcomes of conventional laboratory spectroscopies (UV‐Vis, IR, Raman, EPR, NMR etc.). Selected examples are taken from the authors research activity in the last two decades, covering both band‐gap and shape engineered TiO2 materials and microporous titanosilicates (ETS‐10, TS‐1 and Ti?AlPO‐5). The relevance of the state of the art simulation techniques as a support for experiments interpretation is underlined for all the reported examples.  相似文献   

4.
Ashless and non‐phosphorus hydroxyl‐containing dithiocarbamate‐triazine compounds,2,4,6‐tri[N,N‐di‐i‐octyldithiocarmate‐(2′‐hydroxyl)‐propionylthio]‐1,3,5‐s‐triazine (LDION) were prepared and their tribological behaviour as additives in mineral oil were evaluated using a four‐ball tester. Thermal degradation tests were conducted to identify their thermal stabilities using a thermo‐gravimetric analyser. The worn surfaces were investigated by X‐ray photoelectron spectroscopy (XPS) and X‐ray absorption near edge structure (XANES) spectroscopy. The results indicate that the additive LDION possesses high thermal stabilities and good load‐carrying capacities. Moreover, it has good anti‐wear property at all test concentration and under all test loads. The results of XPS and XANES analyses illustrate that the prepared compounds as additives in mineral oil forms a protective film containing oxidised compounds and organic nitrogen‐containing compounds and inorganic sulfate on the metal surface during sliding process. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
Cytochrome P450 enzymes are an important family of biocatalysts that oxidize chemically inert C?H bonds. There are many unresolved questions regarding the catalytic reaction intermediates, in particular P450 Compound I (Cpd‐I) and II (Cpd‐II). By using simple molecular models, we simulate various X‐ray spectroscopy signals, including X‐ray absorption near‐edge structure (XANES), resonant inelastic X‐ray scattering (RIXS), and stimulated X‐ray Raman spectroscopy (SXRS) of the low‐ and high‐spin states of Cpd‐I and II. Characteristic peak patterns are presented and connected to the corresponding electronic structures. These X‐ray spectroscopy techniques are complementary to more conventional infrared and optical spectroscopy and they help to elucidate the evolving electronic structures of transient species along the reaction path.  相似文献   

6.
It is of great significance to reveal the detailed mechanism of neighboring effects between monomers, as they could not only affect the intermediate bonding but also change the reaction pathway. This paper describes the electronic effect between neighboring Zn/Co monomers effectively promoting CO2 electroreduction to CO. Zn and Co atoms coordinated on N doped carbon (ZnCoNC) show a CO faradaic efficiency of 93.2 % at ?0.5 V versus RHE during a 30‐hours test. Extended X‐ray absorption fine structure measurements (EXAFS) indicated no direct metal–metal bonding and X‐ray absorption near‐edge structure (XANES) showed the electronic effect between Zn/Co monomers. In situ attenuated total reflection‐infrared spectroscopy (ATR‐IR) and density functional theory (DFT) calculations further revealed that the electronic effect between Zn/Co enhanced the *COOH intermediate bonding on Zn sites and thus promoted CO production. This work could act as a promising way to reveal the mechanism of neighboring monomers and to influence catalysis.  相似文献   

7.
杨琦  杜林颖  王旭  贾春江  司锐 《催化学报》2016,(8):1331-1339
在过去的25年,纳米金催化剂上 CO氧化反应得到广泛研究,但始终没有一致的结论。这是因为影响纳米金催化活性的因素很多,包括金的价态、载体的性质、氧空位、金属与载体之间的相互作用等,尤其是各影响因素之间相互牵制,增加了催化反应机理的研究难度。氧化铈载体表面氧缺陷的浓度较高,有利于活性金属组分在其表面的稳定和分散,因此氧化铈纳米晶负载的 Au催化剂受到广泛关注。此外,当 CeO2晶格中部分 Ce被化学性质不同的其它元素取代后,可以促进 CeO2晶格氧的活化,提高氧的储放能力,从而有利于催化反应进行。因此,本文采用水热法合成了组成均匀的 CeO2, CeZrOx和 CeZrLaOx三个载体,并通过沉淀-沉积法负载金。利用 X射线衍射(XRD)、拉曼光谱(Raman)、X射线光电子能谱(XPS)、高分辨透射电镜(HRTEM)、X射线吸收精细结构(XAFS)和氢气程序升温还原(H2-TPR)等技术分析了催化剂的物相结构、表面性质、形貌以及金纳米颗粒的大小和价态等性质,并结合其在 CO氧化反应中催化性能的差异,探讨影响金催化剂活性的关键因素。 XRD, TEM, HRTEM和 XAFS结果表明,三个载体上所得金纳米颗粒的平均尺寸都在2–4 nm,且分散较好; XPS结果表明,影响催化剂活性的关键因素不是金的价态,而是载体表面的活性氧物种。从Raman结果可知,掺杂后的氧化铈载体上氧空位浓度明显增加,因而催化剂活性都有所提高。 H2-TPR进一步探讨了三个载体以及负载金后其氧化还原能力的变化,结果表明,金和载体之间的相互作用可以增强载体的氧化还原性能以及表面氧空位浓度,进一步提高了催化剂活性,而负载金催化剂氧化还原性能的变化与载体的组成密切相关。由于锆的掺杂可使金与载体之间相互作用减弱,而镧则增强了二者间相互作用,因此 Au/CeZrLaOx催化剂上锆和镧的协同掺杂作用使其表面活性氧物种浓度最高,低温时表现出最高的催化活性。  相似文献   

8.
9.
Gold nanoparticles of 10–24 and 5–8 nm in size were obtained by chemical citrate reduction and UV photoreduction, respectively, on acid‐treated multiwalled carbon nanotubes (MWCNTs) and on ZnO/MWCNT composites. The shape and size of the deposited Au nanoparticles were found to be dependent upon the synthetic method used. Single‐crystalline, hexagonal gold particles were produced in the case of UV photoreduction on ZnO/MWCNT, whereas spherical Au particles were deposited on MWCNT when the chemical citrate reduction method was used. In the UV photoreduction route, n‐doped ZnO serves as the e? donor, whereas the solvent is the hole trap. All materials were fully characterised by UV/Vis spectroscopy, scanning electron microscopy, transmission electron microscopy, X‐ray photoelectron spectroscopy, Raman spectroscopy and BET surface analysis. The catalytic activity of the composites was studied for the selective hydrogenation of α,β‐unsaturated carbonyl compound 3,7‐dimethyl‐2,6‐octadienal (citral). The Au/ZnO/MWCNT composite favours the formation of unsaturated alcohols (selectivity=50 % at a citral conversion of 20 %) due to the presence of single‐crystalline, hexagonal gold particles, whereas saturated aldehyde formation is favoured in the case of the Au/MWCNT nanocomposite that contains spherical gold particles.  相似文献   

10.
Adsorption/interaction of Carbon monoxide (CO) on a catalytic surface is the key step in electrochemical conversion of CO2 for environmental consideration. Copper (Cu) is known to be the most efficient catalyst for this purpose. Thus, this paper investigates effects of CO adsorption on the electronic/atomic state of polycrystalline Cu surface by using x‐ray absorption spectroscopy (XAS). X‐ray absorption near‐edge structure (XANES) tells that the Cu K‐edge shift +0.2 eV on adsorbing CO. Extended x‐ray absorption fine structure (EXAFS) analysis informs that CO adsorption disturbs Cu surface, i.e. increase of Cu‐Cu bonding distance and decrease of the coordination number of the first nearest neighbor. Both the results of XANES and EXAFS imply decrease of d‐electron density of Cu on the adsorption. Demonstrated is that XAS is very useful in studying the surface phenomena of a catalyst but requires further efforts. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
An extensive study of fluorescence‐detected X‐ray absorption near‐edge structure (XANES) spectroscopy, with the purpose of realizing site‐selectivity, applied to smoothly oxidized cobalt nanoparticles is presented. For this, resonant inelastic X‐ray scattering (RIXS) planes of the nanoparticles were recorded using high‐resolution detection of Kβ emission. The Kβ line represents a superposition of emission lines that correspond to different homovalent compounds inherent in the nanoparticle and that are energetically different. Therefore Co K‐edge XANES spectra, extracted from distinct emission energies of the RIXS planes, show partial valence‐selectivity, which by assuming a simple core–shell model for our nanoparticle, turns over to partial site‐selectivity. The pure site‐specific XANES spectra, for the core and shell respectively, have been obtained by means of a numerical procedure. The influences of the lifetime broadening related to site‐selectivity and XANES were considered and have been accounted for in the final solutions. A metallic Co core exhibiting the crystallographic β‐manganese and hexagonal‐close‐packed phases as well as a Co‐O/C shell of valence 2 showing a wurtzite‐type contribution to the standard rocksalt structure are recognized as the final site‐specific candidates for our system. The separate determination of the physical properties of atoms on different sites in nanoparticles provides for the first time some information about the interaction between the nanoparticle and the corresponding coating that determines at least partly the properties of the particle. This offers new opportunities for tailoring the properties of nanoparticles using suitable surfactants or coatings. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
Rhenium nanocrystalline particles (Re NPs), of 2 nm size, were prepared from NH4ReO4 under mild conditions in neat alcohol. The unsupported Re NPs convert secondary and benzylic alcohols to ketones and aldehydes, respectively, through catalytic acceptorless dehydrogenation (AD). The oxidant‐ and acceptor‐free neat dehydrogenation of alcohols to obtain dihydrogen gas is a green and atom‐economical process for making carbonyl compounds. Secondary aliphatic alcohols give quantitative conversion and yield. Transmission electron microscopy (TEM), X‐ray photoelectron spectroscopy (XPS), Re K‐edge X‐ray absorption near‐edge structure (XANES), and X‐ray absorption fine structure (EXAFS) data confirmed the characterization of the Re NPs as metallic rhenium with surface oxidation to rhenium(IV) oxide (ReO2). Isotope labeling experiments revealed a novel γ‐CH activation mechanism for AD of alcohols.  相似文献   

13.
With new photocatalysts of gold nanoparticles supported on zeolite supports (Au/zeolite), oxidation of benzyl alcohol and its derivatives into the corresponding aldehydes can proceed well with a high selectivity (99 %) under visible‐light irradiation at ambient temperature. Au/zeolite photocatalysts were characterised by UV/Vis, X‐ray photoelectron spectroscopy (XPS), TEM, XRD, energy‐dispersive spectroscopy (EDS), Brauner–Emmet–Teller (BET) analyses, IR and Raman techniques. The surface plasmon resonance (SPR) effect of gold nanoparticles, the adsorption capability of zeolite supports and the molecular polarities of aromatic alcohols were demonstrated to have an essential correlation with the photocatalytic performances. In addition, the effects of light intensity, wavelength range and the role of molecular oxygen were investigated in detail. The kinetic study indicated that the visible‐light irradiation required much less apparent activation energy for photooxidation compared with thermal reaction. Based on the characterisation data and the photocatalytic performances, we proposed a possible photooxidation mechanism.  相似文献   

14.
金催化是纳米催化的代表性体系之一,但对金催化作用的理解还存在争议,特别是金颗粒尺寸对其催化作用的影响.金颗粒尺寸减小导致的表面结构主要变化之一是表面配位不饱和金原子密度的增加,因此研究金原子配位结构对其催化作用的影响对于理解金催化作用尺寸依赖性具有重要意义.具有不同配位结构的金颗粒表面可以利用金台阶单晶表面来模拟.我们研究组以同时具有Au(111)平台和Au(111)台阶的Au(997)台阶表面为模型表面,发现Au(111)台阶原子在CO氧化、NO氧化和NO分解反应中表现出与Au(111)平台原子不同的催化性能.负载型Au颗粒催化甲酸氧化反应是重要的Au催化反应之一.本文利用程序升温脱附/反应谱(TDS/TPRS)和X射线光电子能谱(XPS)研究了甲酸在清洁的和原子氧覆盖的Au(997)表面的吸附和氧化反应,观察到Au(111)台阶原子和Au(111)平台原子不同的催化甲酸根氧化反应行为.与甲酸根强相互作用的Au(111)台阶原子表现出比与甲酸根弱相互作用的Au(111)平台原子更高的催化甲酸根与原子氧发生氧化反应的反应活化能.在清洁Au(997)表面,甲酸分子发生可逆的分子吸附和脱附.甲酸分子在Au(111)台阶原子的吸附强于在Au(111)平台原子的吸附. TDS结果表明,吸附在Au(111)台阶原子的甲酸分子的脱附温度在190 K,吸附在Au(111)平台原子的甲酸分子的
  脱附温度在170 K. XPS结果表明,分子吸附甲酸的C 1s和O 1s结合能分别位于289.1和532.8 eV.利用多层NO2的分解反应在Au(997)表面控制制备具有不同原子氧吸附位和覆盖度的原子氧覆盖Au(997)表面,包括氧原子吸附在(111)台阶位的0.02 ML-O(a)/Au(997)、氧原子同时吸附在(111)台阶位和(111)平台位的0.12 ML-O(a)/Au(997)、氧原子和氧岛吸附在(111)平台位和氧原子吸附在(111)台阶位的0.26 ML-O(a)/Au(997). TPRS和XPS结果表明,甲酸分子在105 K与Au(997)表面原子氧物种反应生成甲酸根和羟基物种,但甲酸根物种的进一步氧化反应依赖于Au原子配位结构和各种表面物种的相对覆盖度.在0.02 ML-O(a)/Au(997)表面暴露0.5 L甲酸时, Au(111)台阶位氧原子完全反应,甲酸过量.表面物种是Au(111)台阶位吸附的甲酸根、羟基和甲酸分子.在加热过程中,甲酸分子与羟基在181 K反应生成甲酸根和气相水分子(HCOOH(a)+ OH(a)= H2O + HCOO(a)),甲酸根在340 K发生歧化反应生成气相HCOOH和CO2分子(2HCOO(a)= CO2+ HCOOH).在0.12 ML-O(a)/Au(997)和0.26 ML-O(a)/Au(997)表面暴露0.5 L甲酸时,甲酸分子完全反应,原子氧过量.表面物种是Au(111)平台位和Au(111)台阶位吸附的甲酸根、羟基和原子氧.在加热过程中, Au(111)平台位和Au(111)台阶位的甲酸根分别在309和340 K同时发生氧化反应(HCOO(a)+ O(a)= H2O + CO2)和歧化反应(2HCOO(a)= CO2+ HCOOH)生成气相CO2, H2O和HCOOH分子.在0.26 ML-O(a)/Au(997)表面暴露10 L甲酸时,甲酸分子和原子氧均未完全消耗.表面物种是Au(111)平台位和Au(111)台阶位吸附的甲酸根、羟基、甲酸分子和原子氧.在加热过程中,除了上述甲酸根的氧化反应和歧化反应,还发生171 K的甲酸分子与羟基的反应(HCOOH(a)+ OH(a)= H2O + HCOO(a))和216 K的羟基并和反应(OH(a)+ OH(a)= H2O + O(a)).  相似文献   

15.
The cerium oxidation states in single catalyst particles of Pt/Ce2Zr2Ox (x=7 to 8) were investigated by spatially resolved nano X‐ray absorption fine structure (nano‐XAFS) using an X‐ray nanobeam. Differences in the distribution of the Ce oxidation states between Pt/Ce2Zr2Ox single particles of different oxygen compositions x were visualized in the obtained two‐dimensional X‐ray fluorescent (XRF) mapping images and the Ce LIII‐edge nano X‐ray absorption near‐edge structure (nano‐XANES) spectra.  相似文献   

16.
Thiol‐ and solvent‐coordinated cation exchange kinetics have been applied to engineer the composition and crystallinity of novel nanocrystals. The detailed thermodynamics and kinetics of the reactions were explored by NMR spectroscopy, time‐dependent photoluminescence (PL) characterizations and theoretical simulations. The fine structure of the colloidal semiconductor nanocrystals (CSNCs) was investigated by X‐ray absorption near‐edge structure (XANES) and extended X‐ray absorption fine structure (EXAFS). In this way, high‐quality p‐type Ag‐doped ZnS quantum dots (QDs) and Au@ZnS hetero‐nanocrystals with a cubic phase ZnS shell were synthesized successfully.The unprecedented dominant Ag+‐dopant‐induced fluorescence and p‐type conductivity in the zinc‐blende ZnS are reported.  相似文献   

17.
X‐ray photoelectron spectroscopy (XPS) and near‐edge x‐ray absorption fine structure (NEXAFS) spectroscopy have been used to study the time‐dependent adsorption and molecular orientation behaviour of octadecyltrimethoxysilane (ODTMS) on native aluminium oxide surfaces. By measuring the adsorption isotherm using XPS, we show that ODTMS molecules exhibit oscillatory adsorption. The oscillatory adsorption behaviour for ODTMS is analogous to that observed for its simpler short‐chain ‘cousin’—propyltrimethoxysilane (PTMS)—and suggests that the length of the functional alkyl chain on an organosilane does not have a significant influence upon the oscillatory adsorption mechanism. The oscillation in the ODTMS adsorption isotherm shows a maximum and a minimum in coverage at an adsorption time of ~30 and ~65 s, respectively, for a 0.75% ODTMS solution in a 90% ethanol–10% water mixture at pH 4. The time‐dependent orientation behaviour of the ODTMS molecules during adsorption was examined using angular‐dependent carbon K‐edge NEXAFS spectroscopy. We show that the alignment of the ODTMS film changes systematically with deposition time and appears to be correlated with coverage measurements obtained using XPS. In particular, by combining the XPS and NEXAFS results we demonstrate that the minimum ODTMS coverage corresponds to a film whose alignment appears to be predominantly randomized. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
The single‐step syngas‐to‐dimethyl ether (STD) process entails economic and technical advantages over the current industrial two‐step process. Pd/ZnO‐based catalysts have recently emerged as interesting alternatives to currently used Cu/ZnO/Al2O3 catalysts, but the nature of the active site(s), the reaction mechanism, and the role of Pd and ZnO in the solid catalyst are not well established. Now, Zn‐stabilized Pd colloids with a size of 2 nm served as the key building blocks for the methanol active component in bifunctional Pd/ZnO‐γ‐Al2O3 catalysts. The catalysts were characterized by combining high‐pressure operando X‐ray absorption spectroscopy and DFT calculations. The enhanced stability, longevity, and high dimethyl ether selectivity observed makes Pd/ZnO‐γ‐Al2O3 an effective alternative system for the STD process compared to Cu/ZnO/γ‐Al2O3.  相似文献   

19.
The crystal structure and the electronic properties of YbGa2 realising a CaIn2 type atomic arrangement were characterised at ambient conditions using single crystal X‐ray diffraction data and magnetic susceptibility measurements at ambient pressure. Pressure‐induced changes of structural and electronic properties of YbGa2 were measured by means of angle‐dispersive X‐ray powder diffraction and XANES at the Yb LIII threshold. At pressures above 22(2) GPa, YbGa2 undergoes a structural phase transition into a high pressure modification with a UHg2 type crystal structure. Parallel to the pressure‐induced structural alterations, ytterbium in YbGa2 undergoes an increase of the oxidation state from +2 at ambient conditions to +3 in the high‐pressure phase. Quantum chemical calculations of the Electron‐Localisation‐Function confirm that the phase transition is associated with a conversion of the three‐dimensional gallium network of the low‐pressure crystal structure into two‐dimensional gallium layers in the high‐pressure modification.  相似文献   

20.
M‐doped NH2‐MIL‐125(Ti) (M=Pt and Au) were prepared by using the wetness impregnation method followed by a treatment with H2 flow. The resultant samples were characterized by powder X‐ray diffraction (XRD), X‐ray photoelectron spectroscopy (XPS), X‐ray absorption fine structure (XAFS) analyses, N2‐sorption BET surface area, and UV/Vis diffuse reflectance spectroscopy (DRS). The photocatalytic reaction carried out in saturated CO2 with triethanolamine (TEOA) as sacrificial agent under visible‐light irradiations showed that the noble metal‐doping on NH2‐MIL‐125(Ti) promoted the photocatalytic hydrogen evolution. Unlike that over pure NH2‐MIL‐125(Ti), in which only formate was produced, both hydrogen and formate were formed over Pt‐ and Au‐loaded NH2‐MIL‐125(Ti). However, Pt and Au have different effects on the photocatalytic performance for formate production. Compared with pure NH2‐MIL‐125(Ti), Pt/NH2‐MIL‐125(Ti) showed an enhanced activity for photocatalytic formate formation, whereas Au has a negative effect on this reaction. To elucidate the origin of the different photocatalytic performance, electron spin resonance (ESR) analyses and density functional theory (DFT) calculations were carried out over M/NH2‐MIL‐125(Ti).The photocatalytic mechanisms over M/NH2‐MIL‐125(Ti) (M=Pt and Au) were proposed. For the first time, the hydrogen spillover from the noble metal Pt to the framework of NH2‐MIL‐125(Ti) and its promoting effect on the photocatalytic CO2 reduction is revealed. The elucidation of the mechanism on the photocatalysis over M/NH2‐MIL‐125(Ti) can provide some guidance in the development of new photocatalysts based on MOF materials. This study also demonstrates the potential of using noble metal‐doped MOFs in photocatalytic reactions involving hydrogen as a reactant, like hydrogenation reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号