首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The versatile coordination behavior of the P4 butterfly complex [{Cp*Cr(CO)3}2(μ,η1:1-P4)] ( 1 ) towards Lewis acidic pentacarbonyl compounds of Cr, Mo and W is reported. The reaction of 1 with [W(CO)4(nbd)] (nbd=norbornadiene) yields the complex [{Cp*Cr(CO)3}231:1:1:1-P4){W(CO)4}] ( 2 ) in which 1 serves as a chelating P4 butterfly ligand. In contrast, reactions of 1 with [M(CO)4(nbd)] (M=Cr ( a ), Mo ( b )) result in the step-wise formation of [{Cp*Cr(CO)2}233:1:1-P4){M(CO)5}] ( 3 a,b ) and [{Cp*Cr(CO)2}2-(μ43:1:1:1-P4){M(CO)5}2] ( 4 a,b ) which contain a folded cyclo-P4 unit. Complex 4 a undergoes an unprecedented P1/P3-fragmentation yielding the cyclo-P3 complex [Cp*Cr(CO)23-P3)] ( 5 ) and the as yet unknown phosphinidene complex [Cp*Cr(CO)2{Cr(CO)5}23-P)] ( 6 ). The identity of 6 is confirmed by spectroscopic methods and by the in situ formation of [{Cp*Cr(CO)2(tBuNC)}P{Cr(CO)5}2(tBuNC)] ( 7 ). DFT calculations throw light on the bonding situation of the reported products.  相似文献   

2.
The selective formation of the dinuclear butterfly complexes [{Cp′′′Fe(CO)2}2(μ,η1:1‐E4)] (E=P ( 1 a ), As ( 1 b )) and [{Cp*Cr(CO)3}2(μ,η1:1‐E4)] (E=P ( 2 a ), As ( 2 b )) as new representatives of this rare class of compounds was found by reaction of E4 with the corresponding dimeric carbonyl complexes. Complexes 1 b and 2 b are the first As4 butterfly compounds with a bridging coordination mode. Moreover, first studies regarding the reactivity of 1 b and 2 b are presented, revealing the formation of the unprecedented As8 cuneane complexes [{Cp′′′Fe(CO)2}2{Cp′′′Fe(CO)}241:1:2:2‐As8)] ( 3 b ) and [{Cp*Cr(CO)3}441:1:1:1‐As8)] ( 4 ). The compounds are fully characterized by NMR and IR spectroscopy as well as by X‐ray structure analysis. In addition, DFT calculations give insight into the transformation pathway from the E4 butterfly to the corresponding cuneane structural motif.  相似文献   

3.
The coordination properties of new types of bidentate phosphane and arsane ligands with a narrow bite angle are reported. The reactions of [{Cp′′′Fe(CO)2}2(μ,η1:1‐P4)] ( 1 a ) with the copper salt [Cu(CH3CN)4][BF4] leads, depending on the stoichiometry, to the formation of the spiro compound [{{Cp′′′Fe(CO)2}231:1:1:1‐P4)}2Cu]+[BF4]? ( 2 ) or the monoadduct [{Cp′′′Fe(CO)2}231:1:2‐P4){Cu(MeCN)}]+[BF4]? ( 3 ). Similarly, the arsane ligand [{Cp′′′Fe(CO)2}2(μ,η1:1‐As4)] ( 1 b ) reacts with [Cu(CH3CN)4][BF4] to give [{{Cp′′′Fe(CO)2}231:1:1:1‐As4)}2Cu]+[BF4]? ( 5 ). Protonation of 1 a occurs at the “wing tip” phosphorus atoms, which is in line with the results of DFT calculations. The compounds are characterized by spectroscopic methods (heteronuclear NMR spectroscopy and IR spectrometry) and by single‐crystal X‐ray diffraction studies.  相似文献   

4.
The reaction of a P4 butterfly complex with yellow arsenic yields the largest mixed PnAsm ligand complexes synthesized to date. [{Cp′′′Fe(CO)2}2(μ,η1:1‐P4)] reacts with As4 to yield [{Cp′′′Fe}2(μ,η4:4‐PnAs4‐n)] and [Cp′′′Fe(η5‐PnAs5‐n)]. Mass spectrometry together with NMR spectroscopy and X‐ray crystallography give clear evidence about the arrangement of the E positions within the cyclo‐E5 and E4 moieties of the products. Moreover, the results of DFT calculations agree well with the experimental determined outcomes. By coordinating the E4 complex [{Cp′′′Fe}2(μ,η4:4‐PnAs4‐n)] with CuCl, a rearrangement of the E positions occurs in favor with a preferred phosphorus coordination towards copper atoms in the resulting 1D polymeric chain.  相似文献   

5.
Polynuclear Iron/Tantalum and Tantalum Complexes with Asn Ligands Starting with [Cp@Ta(CO)4] ( 1 ) (Cp@ = C5H3tBu2‐1,3) and As4 or (tBuAs)4 ( 2 ) its thermolysis at 190 °C in decalin gives [{Cp@Ta}2(μ‐η4 : η4‐As8)] ( 3 ), which is also formed according to equation (2) in addition to [{Cp@Ta}3As6] ( 5 ). The reaction of 1 or [{Cp*(OC)2Fe}2] ( 6 ) with 3 affords 5 or [{Cp*Fe}{Cp@Ta}As5] ( 8 ) demonstrating the use of 3 as Asn source. 8 can also be synthesized from 1 and [Cp*Fe(η5‐As5)] ( 7 ) for which the cothermolysis of 2 and 6 gives a better yield.  相似文献   

6.
LiE(SiMe3)2 (E = P, As) as Building Unit of Molybdenum Complexes with EH Ligands The complex [{CpMo(CO)2}2(μ‐H)(μ‐PH2)] ( 1 ) can be obtained in a one‐pot reaction using [CpMo(CO)2]2, LiP(SiMe3)2, MeOH and HBF4. Experiments to synthesize [{CpMo(CO)2}2(μ‐H)(μ‐AsH2)] in an analogous reaction sequence using [CpMo(CO)2]2 and LiAs(SiMe3)2 failed. However, the products ‐[{CpMo(CO)2}2(μ, η2‐As2)] and [{CpMo(CO)2}2(μ‐H)(μ4‐As){CpMo(CO)2}24, η1:η1‐As2H){CpMo(CO)2}2(μ‐H)] ( 3 ) could be obtained via this reaction. The deprotonated derivative of 1 , K[{CpMo(CO)2}2(μ‐PH2)] ( 2 ), which can be obtained by reaction of 1 with KH, doesn't react with GaCl3 under KCl elimination as expected. Instead, the Lewis acid/base adduct K[{CpMo(CO)2}2(μ‐PH2)(GaCl3)] ( 4 ) is formed, which adopts a polymeric chain structure in the solid state. The structural and the spectroscopic data of the products are discussed.  相似文献   

7.
The reaction of the phosphinidene complex [Cp*P{W(CO)5}2] ( 1 a ) with diphenyldiazomethane leads to [{W(CO)5}Cp*P=NN{W(CO)5}=CPh2] ( 2 ). Compound 2 is a rare example of a phosphadiazadiene ligand (R‐P=N?N=CR′R′′) complex. At temperatures above 0 °C, 2 decomposes into the complex [{W(CO)5}PCp*{N(H)N=CPh2)2] ( 3 ), among other species. The reaction of the pentelidene complexes [Cp*E{W(CO)5}2] (E=P, As) with diazomethane (CH2NN) proceeds differently. For the arsinidene complex ( 1 b ), only the arsaalkene complex 4 b [{W(CO)5}21:2‐(Cp*)As=CH2}] is formed. The reaction with the phosphinidene complex ( 1 a ) results in three products, the two phosphaalkene complexes [{W(CO)5}21:2‐(R)P=CH2}] ( 4 a : R=Cp*, 5 : R=H) and the triazaphosphole derivative [{W(CO)5}P(Cp*)‐CH2‐N{W(CO)5}=N‐N(N=CH2)] ( 6 a ). The phosphaalkene complex ( 4 a ) and the arsaalkene complex ( 4 b ) are not stable at room temperature and decompose to the complexes [{W(CO)5}4(CH2=E?E=CH2)] ( 7 a : E=P, 7 b : E=As), which are the first examples of complexes with parent 2,3‐diphospha‐1,3‐butadiene and 2,3‐diarsa‐1,3‐butadiene ligands.  相似文献   

8.
The complexes [Ru2(CO)2(μ-CO)(μ-CMe)(η-C5H5)2]? and [Ru2CO2(μ-CO)(μ-CCH2)(η-C5H5)2] react together to give [{Ru2CO)3(η-C5H5)2}2(μ-CMeCHCH)]+ and [{Ru3(CO)3(η-C5H5)3}(μ-CCH2CHC){Ru2(CO)3(η-C5H5)2}], each characterised by X-ray diffraction. The former results from ethylidyne-vinylidene linking followed by an alkylidyne to vinyl rearrangement.  相似文献   

9.
The reaction of the phosphinidene complex [Cp*P{W(CO)5}2] ( 1 a ) with di‐tert‐butylcarboimidophosphene leads to the P? C cage compound 6 and the Lewis acid–base adduct [Cp*P{W(CO)5}2(CNtBu)] ( 2 a ). In contrast, the arsinidene complex shows a different reactivity. At low temperatures, the arsaphosphene complex [{W(CO)5}{η2‐(Cp*)As?P(tBu)}{W(CO)5}] ( 3 ) is formed. At these temperatures, 3 reacts further with a second equivalent of carboimidophosphene to form [{W(CO)5}{η2‐{(Cp*)(tBu)P}As?P(tBu)}{W(CO)5}] ( 5 ), probably by the insertion of a phosphinidene unit (tBuP) into an As? C bond. In contrast, at room temperature 3 reacts further by a radical‐type reaction to form [{(tBu)P?As? As?P(tBu)}{W(CO)5}4] ( 4 ). Compound 4 is the first example of a neutral, 1,3‐butadiene analogue containing only mixed heavier Group 15 elements. It consists of two P?As double bonds connected by arsenic atoms.  相似文献   

10.
The versatile coordination behavior of the P4 butterfly complex [{Cp′′′Fe(CO)2}2(μ,η1:1-P4)] ( 1 , Cp′′′=η5-C5H2tBu3) towards different iron(II) compounds is presented. The reaction of 1 with [FeBr2⋅dme] (dme=dimethoxyethane) leads to the chelate complex [{Cp′′′Fe(CO)2}231:1:2-P4){FeBr2}] ( 2 ), whereas, in the reaction with [Fe(CH3CN)6][PF6]2, an unprecedented rearrangement of the P4 butterfly structural motif leads to the cyclo-P4 moiety in {(Cp′′′Fe(CO)2)231:1:4-P4)}2Fe][PF6]2 ( 3 ). Complex 3 represents the first fully characterized “carbon-free” sandwich complex containing cyclo-P4R2 ligands in a homoleptic-like iron–phosphorus-containing molecule. Alternatively, 2 can be transformed into 3 by halogen abstraction and subsequent coordination of 1 . The additional isolated side products, [{Cp′′′Fe(CO)2}231:1:2-P4){Cp′′′Fe(CO)}][PF6] ( 4 ) and [{Cp′′′Fe(CO)2}231:1:4-P4){Cp′′′Fe}][PF6] ( 5 ), give insight into the stepwise activation of the P4 butterfly moiety in 1 .  相似文献   

11.
Reactions of Cu+ containing the weakly coordinating anion [Al{OC(CF3)3}4]? with the polyphosphorus complexes [{CpMo(CO)2}2(μ,η22‐P2)] ( A ), [CpM(CO)23‐P3)] (M=Cr( B1 ), Mo ( B2 )), and [Cp*Fe(η5‐P5)] ( C ) are presented. The X‐ray structures of the products revealed mononuclear ( 4 ) and dinuclear ( 1 , 2 , 3 ) CuI complexes, as well as the one‐dimensional coordination polymer ( 5 a ) containing an unprecedented [Cu2( C )3]2+ paddle‐wheel building block. All products are readily soluble in CH2Cl2 and exhibit fast dynamic coordination behavior in solution indicated by variable temperature 31P{1H} NMR spectroscopy.  相似文献   

12.
Treatment of the pentaphosphaferrocene [Cp*Fe(η5‐P5)] with CuI halides in the presence of different templates leads to novel fullerene‐like spherical molecules that serve as hosts for the templates. If ferrocene is used as the template the 80‐vertex ball [Cp2Fe]@[{Cp*Fe(η5‐P5)}12{CuCl}20] ( 4 ), with an overall icosahedral C80 topological symmetry, is obtained. This result shows the ability of ferrocene to compete successfully with the internal template of the reaction system [Cp*Fe(η5‐P5)], although the 90‐vertex ball [{Cp*Fe(η511111‐P5)}12(CuCl)10(Cu2Cl3)5{Cu(CH3CN)2}5] ( 2 a ) containing pentaphosphaferrocene as a guest is also formed as a byproduct. With use of the triple‐decker sandwich complex [(CpCr)2(μ,η5‐As5)] as a template the reaction between [Cp*Fe(η5‐P5)] and CuBr leads to the 90‐vertex ball [(CpCr)2(μ,η5‐As5)]@[{Cp*Fe(η5‐P5)}12{CuBr}10{Cu2Br3}5{Cu(CH3CN)2}5] ( 6 ), in which the complete molecule acts as a template. However, if the corresponding reaction is instead carried out with CuCl, cleavage of the triple‐decker complex is found and the 80‐vertex ball [CpCr(η5‐As5)]@[{Cp*Fe(η5‐P5)}12{CuCl}20] ( 5 ) is obtained. This accommodates as its guest [CpCr(η5‐As5)], which has only 16 valence electrons in a triplet ground state and is not known as a free molecule. The triple‐decker sandwich complex [(CpCr)2(μ,η5‐As5)] requires 53.1 kcal mol?1 to undergo cleavage (as calculated by DFT methods) and therefore this reaction is clearly endothermic. All new products have been characterized by single‐crystal X‐ray crystallography. A favoured orientation of the guest molecules inside the host cages has been identified, which shows π???π stacking of the five‐membered rings (Cp and cyclo‐As5) of the guests and the cyclo‐P5 rings of the nanoballs of the hosts.  相似文献   

13.
The reactivity of the P4 butterfly complex [{Cp’’’Fe(CO)2}2(μ,η1:1-P4)] ( 1 , Cp’’’=η5-C5H2tBu3) towards divalent Co, Ni and Zn salts is investigated. The reaction with the bromide salts leads to [{Cp’’’Fe(CO)2}232:1:1-P4){MBr2}] (M=Co ( 2Co ), Ni ( 2Ni ), Zn ( 2Zn )) in which the P4 butterfly scaffold is preserved. The use of the weakly ligated Co complex [Co(NCCH3)6][SbF6]2, results in the formation of [{(Cp’’’Fe(CO)2)234:1:1-P4)}2Co][SbF6]3 ( 3 ), which represents the second example of a homoleptic-like octaphospha-metalla-sandwich complex. The formation of the threefold positively charged complex 3 occurs via redox processes, which among others also enables the formation of [{Cp’’’Fe(CO)2}454:1:1:1:1-P8){Co(CO)2}][SbF6] ( 4 ), bearing a rare octaphosphabicyclo[3.3.0]octane unit as a ligand. On the other hand, the reaction with [Zn(NCCH3)4][PF6]2 yields the spiro complex [{(Cp’’’Fe(CO)2)232:1:1-P4)}2Zn][PF6]2 ( 5 ) under preservation of the initial structural motif.  相似文献   

14.
Hemichelation is emerging as a new mode of coordination where non‐covalent interactions crucially contribute to the cohesion of electron‐unsaturated organometallic complexes. This study discloses an unprecedented demonstration of this concept to a Group 9 metal, that is, RhI. The syntheses of new 14‐electron RhI complexes were achieved by choosing the anti‐[(η66‐fluorenyl){Cr(CO)3}2] anion as the ambiphilic hemichelating ligand, which was treated with [{Rh(nbd)Cl}2] (nbd=norbornadiene) and [{Rh(CO)2Cl}2]. The new T‐shaped RhI hemichelates were characterized by analytical and structural methods. Investigations using the methods of the DFT and electron‐density topology analysis (NCI region analysis, QTAIM theory) confirmed the closed‐shell, non‐covalent and attractive characters of the interaction between the RhI center and the proximal Cr(CO)3 moiety. This study shows that, by appropriate tuning of the electronic properties of the ambiphilic ligand, truly coordination‐unsaturated RhI complexes can be synthesized in a manageable form.  相似文献   

15.
The reaction of [{Ir(cod)(μ‐Cl)}2] and K2CO3 or of [{Ir(cod)(μ‐OMe)}2] alone with the non‐natural tetrapyrrole 2,2′‐bidipyrrin (H2BDP) yields, depending on the stoichiometry, the mononuclear complex [Ir(cod)(HBDP)] or the homodinuclear complex [{Ir(cod)}2(BDP)]. Both complexes react readily with carbon monoxide to yield the species [Ir(CO)2(HBDP)] and [{Ir(CO)2}2(BDP)], respectively. The results from NMR spectroscopy and X‐ray diffraction reveal different conformations for the tetrapyrrolic ligand in both complexes. The reaction of [{Ir(coe)2(μ‐Cl)}2] with H2BDP proceeds differently and yields the macrocyclic [4e?,2H+]‐oxidized product [IrCl2(9‐Meic)] (9‐Meic = monoanion of 9‐methyl‐9,10‐isocorrole), which can be addressed as an iridium analog of cobalamin.  相似文献   

16.
Reduction of [Cp*Fe(η5‐As5)] with [Cp′′2Sm(thf)] (Cp′′=η5‐1,3‐(tBu)2C5H3) under various conditions led to [(Cp′′2Sm)(μ,η44‐As4)(Cp*Fe)] and [(Cp′′2Sm)2As7(Cp*Fe)]. Both compounds are the first polyarsenides of the rare‐earth metals. [(Cp′′2Sm)(μ,η44‐As4)(Cp*Fe)] is also the first d/f‐triple decker sandwich complex with a purely inorganic planar middle deck. The central As42? unit is isolobal with the 6π‐aromatic cyclobutadiene dianion (CH)42?. [(Cp′′2Sm)2As7(Cp*Fe)] contains an As73? cage, which has a norbornadiene‐like structure with two short As?As bonds in the scaffold. DFT calculations confirm all the structural observations. The As?As bond order inside the cyclo As4 ligand in [(Cp′′2Sm)(μ,η44‐As4)(Cp*Fe)] was estimated to be in between an As?As single bond and a formally aromatic As42? system.  相似文献   

17.
Various di- and poly-nuclear transition metal complexes have been investigated as catalysts for the metal carbonyl substitution reaction. The complexes [{(η5-C5H4R)Fe(CO)2} 2] (R = H, Me, CO2Me, OMe, O(CH2)4OH) and [{(η5-C5H5)-Ru(CO)2} 2] are active catalysts for a range of substitution reactions including the probe reaction [Fe(CO)4(CNBut)] + ButNC → [Fe(CO)3(CNBut)2] + CO. [{(η5-C5Me5)Fe(CO)2}2] is catalytically active only on irradiation with visible light. For [{η5-C5H5)Fe(CO)2}2] and a range ofisocyanides RNC ( R = But, C6H5CH2, 2,6-Me2C6H3), catalyst modification by substitution with isocyanide is a major factor influencing the degree of the catalytic effects observed, e.g. [{(η5-C5H5)Fe(CO)(CNBut)}2] is approximately 35 times as active as [(η5-C5H5)2FE2(CO)3(CNBut)] for the [Fe(CO)4(CNBut)] → [Fe(CO)3(CNBut)2] conversion. Mechanistic studies on this system suggest that the catalytic substitution step probably involves a rapid intermolecular attack of isonitrile, possibly on a labile catalyst-substrate radical intermediate such as {[Fe(CO)4(CNR)][(η5-C5H5)Fe(CO)2]}; or on a reactive radical cation such as [Fe(CO)4(CNR)]+ generated via electron transfer between the substrate and the catalyst. Other transition metal complexes which also catalyze the substitution of CO by isocyanide in [Fe(CO)4(CNR)] (and [M(CO)6] (M = Cr, Mo, W), [Mn2(CO)10], [Re2(CO)10]) include [Ru3(CO)12], [H4Ru4(CO)12], [M4(CO)12] (M = Co, Ir) and [Co2(CO)8]. These reactions conform to the general mechanistic patterns established for [{(η5-C5H5)Fe(CO)2}2], suggesting a similar mechanism. A range of materials, notably PtO2, PdO and Pd/C, act as promoters for the homogeneous di- and poly-nuclear transition metal catalysts, and can even be used to induce activity in normally inactive dimer and cluster complexes e.g. [Os3(CO)12]. This promotion is attributed to at least three possible effects: the removal of catalyst inhibitors, a catalyzed substitution of the homogeneous catalyst partner, and a possible homogeneous-heterogeneous interaction which promotes the formation of catalytic intermediates.  相似文献   

18.
Triangulated Dodecahedral Heterotrimetallic‐ and ‐tetrametallic Iron–Ruthenium Clusters with CpR and Pn Ligands (n = 5, 4) The cothermolysis of [Cp*Fe(η5‐P5)] ( 1 ) and [{Cp″(OC)2Ru}2](Ru–Ru) ( 2 ), Cp″ = C5H3But2‐1,3, affords low yields of [Cp″Ru(η5‐P5)] ( 3 ) and [{Cp″Ru}2P4] ( 4 ) as well as the triangulated dodecahedral hetero‐ and homotrimetallic clusters [{Cp″Ru}2{Cp*Fe}P5] ( 5 ), [{Cp″Ru}3P5] ( 6 ), [{Cp*Fe}2{Cp″Ru}P5] ( 7 ) and the tetranuclear compound [{Cp″Ru}3{Cp*Fe}P4] ( 8 ). X‐ray crystallographic studies show that the P5 ligand in the distorted M2M′P5‐triangulated dodecahedra of 5 and 7 offers an unusual novel coordination mode derived from the educt 1 .  相似文献   

19.
An aryldimethylalane‐appended analogue of 1,1′‐bis(diphenylphosphino)ferrocene, FcPPAl, was prepared, and reaction with [Pt(nb)3] (nb=norbornene) afforded [Pt(η2‐nb)(FcPPAl)] ( 1 ). Heating a solution of 1 to 80 °C resulted in crystallization of [{Pt(FcPPAl)}2] ( 2 ), whereas treatment of 1 with C2H4, C2Ph2, H2, or CO provided [PtL(FcPPAl)] [L=C2H4 ( 3 ), C2Ph2 ( 4 )], [PtH2(FcPPAl)] ( 5 ), and [Pt(CO)(FcPPAl)] ( 6 ). In all complexes, the FcPPAl ligand is coordinated through both phosphines and the alane. Whereas 2 adopts a T‐shaped geometry at platinum, 3 – 5 are square‐pyramidal, and 6 is distorted square‐planar. The hydride and carbonyl complexes feature unusual multicenter bonding involving platinum, aluminum, and a hydride or carbonyl ligand.  相似文献   

20.
Coordination Chemistry of P-rich Phosphanes and Silylphosphanes. XVI [1] Reactions of [g2-{P–PtBu2}Pt(PPh3)2] and [g2-{P–PtBu2}Pt(dppe)] with Metal Carbonyls. Formation of [g2-{(CO)5M · PPtBu2}Pt(PPh3)2] (M = Cr, W) and [g2-{(CO)5Cr · PPtBu2}Pt(dppe)] [η2-{P–PtBu2}Pt(PPh3)2] 4 reacts with M(CO)5 · THF (M = Cr, W) by adding the M(CO)5 group to the phosphinophosphinidene ligand yielding [η2-{(CO)5Cr · PPtBu2}Pt(PPh3)2] 1 , or [η2-{(CO)5W · PPtBu2}Pt(PPh3)2] 2 , respectively. Similarly, [η2-{P–PtBu2}Pt(dppe)] 5 yields [η2-{(CO)5Cr · PPtBu2}Pt(dppe)] 3 . Compounds 1 , 2 and 3 are characterized by their 1H- and 31P-NMR spectra, for 2 and 3 also crystal structure determinations were performed. 2 crystallizes in the monoclinic space group P21/n (no. 14) with a = 1422.7(1) pm, b = 1509.3(1) pm, c = 2262.4(2) pm, β = 103.669(9)°. 3 crystallizes in the triclinic space group P1 (no. 2) with a = 1064.55(9) pm, b = 1149.9(1) pm, c = 1693.2(1) pm, α = 88.020(8)°, β = 72.524(7)°, γ = 85.850(8)°.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号