共查询到20条相似文献,搜索用时 12 毫秒
1.
Xiu Hui LIU Yan ZHANG Guo Fang ZUO Xiao Quan LU*College of Chemistry & Chemical Engineering Northwest Normal University Lanzhou 《中国化学快报》2006,17(5):657-660
Epinephrine (EP) is one of the most important neurotransmitters in mammalian central nervous systems, existing in the nervous tissue and body fluid in the form of large organic cations, and controlling the nervous system in the series of biological perfor… 相似文献
2.
碳纳米管修饰电极对多巴胺和肾上腺素的电分离及同时测定 总被引:17,自引:0,他引:17
研究了多巴胺 (DA)和肾上腺素 (EP)在多壁碳纳米管 (MWNT)修饰电极上的电化学性质 ,发现该修饰电极对神经递质DA和EP有显著的增敏和电分离作用。还原峰电位差达ΔEp=390mV ,可同时测定DA和EP。DA和EP的还原峰电流与其浓度分别在 2 .0× 10 -6~ 1.0× 10 -3 mol/L和 1.0× 10 -6~ 1.0× 10 -3 mol/L浓度范围内呈良好的线性关系 ;方法的检出限分别为 1× 10 -6mol/L和 5× 10 -7mol/L。由于抗坏血酸 (AA)在MWNT修饰电极上的氧化是不可逆的 ,因此利用还原峰进行测定 ,消除了AA对DA和EP的干扰 相似文献
3.
4.
应用电沉积方法制备柠檬酸修饰电极(CA/GC), 差分脉冲法研究多巴胺(DA)和肾上腺素(EP)在该修饰电极上的电化学行为.结果表明, 两样品DA、EP在该电极的还原峰电位差380 mV, 而抗坏血酸(AA)在此电位区无还原峰, 因此可实现该修饰电极对DA和EP的同时检测, 而且高浓度AA不发生干扰.在pH 6.0的磷酸盐缓冲液中, DA和EP还原峰电流与其浓度分别在1.0×10-6 ~ 6.0×10-5 mol•L-1和2.0×10-6 ~ 6.0×10-5 mol•L-1 范围内呈线性关系.CA/GC电极制备简单, 重现性好, 可望用于多巴胺针剂(DA)和肾上腺素针剂(EP)的同时检测 相似文献
5.
The New Application of Boron Doped Diamond Electrode Modified with Nafion and Lead Films for Simultaneous Voltammetric Determination of Dopamine and Paracetamol 下载免费PDF全文
A new voltammetric procedure for the simultaneous determination of dopamine (DA) and paracetamol (PA) using boron doped diamond electrode modified with Nafion and lead films (PbF/Nafion/BDDE) was investigated. The use of this electrode resolved the overlapped voltammetric waves of DA and PA into well‐defined peaks with peak to peak separation of about 320 mV. Under the optimized experimental conditions in differential pulse voltammetric technique, DA and PA gave a linear response over the ranges 2.0×10?7–1.0×10?4 mol L?1*(R2=0.9996) and 5.0×10?7–1.0×10?3 mol L?1 (R2=0.9979), respectively. The detection limits were found to be 5.4×10?8 mol L?1 for DA and 1.4×10?7 mol L?1 for PA. They are lower, comparable or in some cases a little bit higher than those obtained using other electrochemical sensors. However, the proposed procedure of the sensor preparation is much simpler than procedures described in the literature with a lower detection limit. The proposed procedure was successfully applied to the determination of PA in some commercial pharmaceuticals as well as to the simultaneous determination of DA and PA in human urine, whole blood and serum samples directly without any separation steps. 相似文献
6.
A simple, rapid and accurate high performance liquid chromatographic (HPLC) technique coupled with chemiluminescence (CL) detection was developed for the simultaneous determination of epinephrine (E), noradrenaline (NA) and dopamine (DA). It was based on the analyte enhancement effect on the CL reaction between luminol and potassium ferricyanide. The effects of various parameters, such as potassium ferricyanide concentration, luminol concentration, pH value and component of the mobile phase on chromatographic behaviors of the analytes (E, NA and DA) were investigated. The separation was carded out on C18 column using the mobile phase of 0.01 mol/L potassium hydrogen phthalate solution and methanol (92 : 8, V/V). Under the optimum condi- tions, E, NA and DA showed good linear relationships in the range of 1 × 10^-8 -5 × 10^-6, 5.0× 10^-9 -1.0× 10^-6 and 5.0×10^-9-1.0× 10^-6 g]mL respectively. The detection limits for E, NA and DA were 4.0×10^-9, 1.0× 10^-9 and 8.0 × 10^-10 g/mL. The proposed method has been applied successfully to the analysis of E, NA and DA in human serum samples. 相似文献
7.
Sadik Cogal 《Analytical letters》2018,51(11):1666-1679
Poly(3,4-ethylenedioxythiophene) was deposited on a reduced graphene oxide-decorated glassy carbon electrode through an electrochemical polymerization. The resulting glassy carbon electrode-reduced graphene oxide-poly(3,4-ethylenedioxythiophene) electrode was applied as an electrochemical biosensor for the determination of dopamine in the presence of ascorbic acid and uric acid. The material deposited on glassy carbon electrode was investigated in terms of morphology and structural analysis. The comparison of electrochemical behavior of the glassy carbon electrode-reduced graphene oxide-poly(3,4-ethylenedioxythiophene) electrode with the glassy carbon electrode-graphene oxide, glassy carbon electrode-reduced graphene oxide, and glassy carbon electrode-poly(3,4-ethylenedioxythiophene) electrodes exhibited high electrocatalytic activity for dopamine detection. Electrochemical kinetic parameters of glassy carbon electrode-reduced graphene oxide-poly(3,4-ethylenedioxythiophene), including the charge transfer coefficient α (0.49) and electron transfer rate constant ks (1.04), were determined and discussed. The glassy carbon electrode-reduced graphene oxide-poly(3,4-ethylenedioxythiophene) electrode was studied for the determination of dopamine by differential pulse voltammetry and exhibited a linear range from 19.6 to 122.8?µM with a sensitivity of 3.27?µA?µM?1?cm?2 and a detection limit of 1.92?µM. The developed biosensor exhibited good selectivity toward dopamine with high reproducibility and stability. 相似文献
8.
本文构建了基于取代型多酸与还原氧化石墨烯(RGO)复合材料的多巴胺电化学传感器. 首先,通过水热法合成了十一钨镍杂多钨硅酸盐K2H2SiW11NiO39·xH2O(SiW11Ni),利用Hummers法与化学还原法合成了还原氧化石墨烯. 并使用SEM、XRD与FTIR等测试方法对材料进行了表征. 将SiW11Ni与RGO按照一定的比例滴涂在玻碳电极表面,以便成功构建出传感界面(SiW11Ni-RGO/GCE). 然后,采用电化学阻抗法与循环伏安法等方法研究了传感界面的电化学性质. 优化实验条件后,利用该传感器通过循环伏安法对多巴胺进行定量检测,并且氧化过程展现出较为良好的性能. 其检出限为3.2 μmol·L -1(S/N = 3),灵敏度为9.71 μA·(μmol·L -1·cm -2) -1,线性范围为10 ~ 80 μmol·L -1. 同时,所制备的传感器表现出良好的稳定性与抗干扰能力. 该传感器修饰过程简单、成本低、电化学性能良好,为多酸在化学传感领域的应用提供新思路. 相似文献
9.
Alumina Polished Glassy Carbon Electrode as a Simple Electrode for Lower Potential Electrochemical Detection of Dopamine in its Sub‐micromolar Level 下载免费PDF全文
Balamurugan Thirumalraj Selvakumar Palanisamy Shen‐Ming Chen R. Sayee Kannan 《Electroanalysis》2016,28(3):425-430
The electrochemical behaviour of dopamine (DA) at a cleaned and alumina polished glassy carbon electrode (GCE) was studied using cyclic voltammetry (CV). The CV studies revealed that alumina polished GCE (AGCE) shows an enhanced oxidation peak current response with 217 mV negative potential shift towards DA than that of cleaned GCE. The differential pulse voltammetry result shows that the AGCE detects the DA in the linear concentration ranges from 0.15 to 25.25 µmol L?1. The limit of detection was calculated as 0.046 µmol L?1 with a sensitivity of 3.74 µA µmol L?1 cm?2 for the determination of DA. The fabricated AGCE shows a satisfactory selectivity, practicality along with appreciable repeatability and reproducibility. 相似文献
10.
The synthesis and characterization of a novel BODIPY dye functionalized with bis‐boronic acid groups to enable direct glucose sensing through selective recognition of carbohydrates is reported. Styrylation with boronic acid groups at the 3,5‐positions of the BODIPY core results in an extension of the π‐conjugation system of the dye and in a red‐shift of the main absorption band from 500 to 637 nm. The functionalized BODIPY dye was adsorbed on a glassy carbon electrode using the drop and dry method. Modified and bare electrodes were characterized using cyclic voltammetry and scanning electrochemical microscopy, while glucose detection was carried out by using differential pulse voltammetry and chronoamperometry. The detection limit was determined to be 1.42 μM. The dye was found to be selective and sensitive towards glucose, since likely interferences have only minor effects on the glucose detection. 相似文献
11.
《Electroanalysis》2017,29(8):1976-1984
A new electrochemical microbial biosensor system based on Candida tropicalis was developed for the fast detecting of dopamine and epinephrine. Candida tropicalis was immobilized in a carbon paste electrode (CPE) with single wall carbon nanotube (SWCNT). Immobilized cells were used as a origin of the polyphenol oxidase (PPO) to develop voltammetric epinephrine and dopamine biosensor. Voltammetric determination of phenolic compounds such as epinephrine and dopamine a simple technique which is available. Direct oxidation of phenols can be used, but the oxidation potentials of this compounds are similar and they can not be detected distinctively. Another possibility is the use of biosensors based on the polyphenol oxidase (tyrosinase) enzyme that oxidizes the phenolic compounds into their related quinones. By this way, phenolic compounds are epinephrine and dopamine which were used in this study as well detected at different potentials. In this study differential pulse voltammetry and amperometry techniques were used for the determination of dopamine and epinephrine. The effect of varying the amounts of SWCNT and the response of microorganism to epinephrine was investigated to find the optimum composition of the sensor. The effects of pH and temperature were also examined. Increases in biosensor responses obtained by amperometric measurements were linearly related to dopamine concentrations between 0.025 and 0.25 mM and epinephrine concentrations between 0.01 and 0.1 mM. Limits of detection of the biosensor for dopamine and epinephrine were calculated to be 0.008 and 0.0023 mM, respectively. Finally, proposed system was applied to epinephrine and dopamine analysis in pharmaceutical drugs and synthetic serum and the results were compared with LC MS MS method. 相似文献
12.
An osmium redox polymer PVI-PAA-dmeOs is electrodeposited onto a gold electrode by using repetitive double potential step chronoamperometry. The resulting film is permeable to the substrates and products of the catalyzed reaction, and permits fast electron transfer. The frequency variation during the potential step process is recorded using electrochemical quartz-crystal microbalance (EQCM). A reaction mechanism for electrochemical deposition of the osmium redox polymer is proposed. The characteristics of the PVI-PAA-dmeOs film are investigated by EQCM and cyclic voltametry. The results show the hydrated osmium PVI-PAA-dmeOs film to exhibit excellent electrocatalytic activity towards the oxidation of epinephrine. At a bare gold electrode, the epinephrine oxidation current increases greatly and the oxidation peak potential negatively shifts to about 0.16 V (Ag/AgCl) at the film-modified electrode. Under optimal conditions, amperometric measurements are performed at 0.18 V and the current response of epinephrine changes linearly with its concentration from 5 × 10?7 to 1 × 10?4 mol l?1. A detection limit of 1.5 × 10?7 mol l?1 (S/N = 3) is obtained. 相似文献
13.
用循环伏安法制备了聚L-精氨酸修饰玻碳电极,研究了多巴胺和肾上腺素在修饰电极上的电化学行为,建立了同时测定多巴胺和肾上腺素的新方法。在pH7.5的磷酸盐缓冲溶液中,多巴胺在修饰电极上产生一对氧化还原峰,峰电位分别为0.276V和0.059V;肾上腺素在修饰电极上产生3个氧化峰和一个还原峰,峰电位分别为0.262V、0.121V、-0.126V和-0.316V(对Ag/AgCl电极)。多巴胺和肾上腺素同时存在时ΔEpc=375mV,用还原峰对多巴胺和肾上腺素同时测定的线性范围分别为8.0×10-7~5.0×10-4mol/L和5.0×10-7~5.0×10-5mol/L;检出限分别为3.0×10-7mol/L和1.0×10-7mol/L。大量的抗坏血酸和尿酸不干扰测定,用于人尿液中多巴胺和肾上腺素样品的同时测定,结果满意。 相似文献
14.
人工神经网络-微分脉冲伏安法同时测定尿液中的多巴胺、尿酸及抗坏血酸 总被引:1,自引:0,他引:1
研究了多巴胺、尿酸和抗坏血酸在玻碳电极上的伏安行为.在pH 5.7的Britton - Robinson缓冲溶液中,采用微分脉冲伏安法进行电化学扫描,3种化合物均有良好的氧化峰,但其波谱重叠严重,常规伏安法难以同时测定.采用化学计量学方法中的偏最小二乘法(PLS)、主成分回归法(PCR)、径向基人工神经网络法(RBF-... 相似文献
15.
Susmita Pradhan Mahuya Bhattacharyya Banerjee Dr. Sudip Biswas Dr. Nor Aliya Hamizi Prof. Dipak K. Das Prof. Radhaballabh Bhar Prof. Rajib Bandyopadhyay Prof. Panchanan Pramanik 《Electroanalysis》2021,33(2):383-392
Herein we developed a simple, cost effective, electrochemical sensor based on nanosized copper telluride (nps-CuTe) for simultaneous detection of epinephrine (EP) and uric acid (UA). Voltammetric responses suggests dramatical improvement of electrocatalytic properties of both molecules by incorporating CuTe nps into unmodified graphite paste electrode (bare GP). Differential pulse voltammetric (DPV) measurement depicts large potential separation of 128 mV between EP and UA, allows their simultaneous determination from binary mixture. Under optimized condition, CuTe modified graphite paste electrode (CuTe/GP) manifested linear relationships of EP and UA in the range of 5–60 μM and 5–120 μM with detection limit (S/N=3) of 18 nM and 32 nM respectively. Moreover, CuTe/GP showed satisfactory response towards pharmaceutical and clinical samples for determining EP and UA concentrations. 相似文献
16.
聚吖啶橙修饰电极的电化学行为及其对肾上腺素的电催化性能 总被引:10,自引:0,他引:10
研究了聚吖啶橙 (POAO)修饰电极及其电化学性能 ,并用于肾上腺素 (EP)的电化学测定。EP在POAO修饰电极上产生一灵敏的氧化峰 ,与裸玻碳电极 (GCE)相比 ,其峰电位负移了 2 30mV ,明显降低了EP的氧化过电位。在pH 6 .0的磷酸氢二钠 柠檬酸缓冲溶液中 ,氧化峰电流与EP的浓度在 4 .5× 10 - 7~ 9.2× 10 - 5mol L范围内呈良好的线性关系 ,检出限为 1.0× 10 - 9mol L。可用于实际样品中EP的测定 相似文献
17.
18.
建立了快速测定盐酸金霉素(CTC)的方法。通过NaBH4还原法制备纳米银(AgNPs)溶胶,并利用X射线衍射和紫外-可见光谱进行表征。将制备好的AgNPs滴涂到玻碳电极表面制备修饰电极(AgNPs/GCE),研究了CTC在AgNPs/GCE上的电化学行为及伏安法测定,优化了缓冲溶液和pH等检测条件。结果表明,CTC在pH 3.3的柠檬酸-NaOH-HCl缓冲溶液中检测效果最佳。CTC在AgNPs/GCE上发生2个电子和2个质子的不可逆电化学氧化反应,且反应受吸附控制。最佳条件下,CTC的氧化峰电流与其浓度呈现良好的线性关系,线性范围为0.5~100μmol/L,检出限为0.14μmol/L。该修饰电极可用于河水样品检测。 相似文献
19.
Electrochemical behavior of dopamine (DA) was investigated at the gold nanoparticles self‐assembled glassy carbon electrode (GNP/LC/GCE), which was fabricated by self‐assembling gold nanoparticles on the surface of L ‐cysteine (LC) modified glassy carbon electrode (GCE) via successive cyclic voltammetry (CV). A pair of well‐defined redox peaks of DA on the GNP/LC/GCE was obtained at Epa=0.197 V and Epc=0.146 V, respectively. And the peak separation between DA and AA is about 0.2 V, which is enough for simultaneous determination of DA and AA. The peak currents of DA and AA were proportional with their concentrations in the range of 6.0×10?8–8.5×10?5 mol L?1 and 1.0×10?6–2.5×10?3 mol L?1, with the detection limit of 2.0×10?8 mol L?1 and 3.0×10?7 mol L?1 (S/N=3), respectively. The modified electrode exhibits an excellent reproducibility, sensibility and stability for simultaneous determination of DA and AA in human serum with satisfactory result. 相似文献
20.
电聚合烟酰胺制备电化学传感器:同时测定多巴胺、尿酸和抗坏血酸 总被引:2,自引:0,他引:2
用循环伏安法(CV)选择不同电位区间来电聚合烟酰胺(NA)得到了两种聚合物膜修饰电极:poly-niacinamide/GCE (poly-NA/GCE)和poly- nicotinic acid /GCE (poly-NC/GCE)。这两电极都具有显著电化学催化作用,能明显地降低多巴胺(DA)、尿酸(UA)和抗坏血酸(AA)的氧化过电位,并在混合溶液中使这些物质的氧化峰电位距离足够大,可进行三物质的同时测定。poly-NC/GCE的电催化性能更好一些,用差分脉冲伏安法(DPV)测定抗坏血酸,线性范围为75–3000 µmol L-1,电流灵敏度为5.6 mA•L•mol-1;测定多巴胺,线性范围为0.37 – 16 µmol L-1,电流灵敏度为1140 mA•L•mol-1; 测定尿酸,线性范围为0.74 – 230 µmol L-1,电流灵敏度为102 mA•L•mol-1。该电极具有很高的灵敏度、选择性和抗污染能力。 相似文献