首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Li7La3Zr2O12‐based Li‐rich garnets react with water and carbon dioxide in air to form a Li‐ion insulating Li2CO3 layer on the surface of the garnet particles, which results in a large interfacial resistance for Li‐ion transfer. Here, we introduce LiF to garnet Li6.5La3Zr1.5Ta0.5O12 (LLZT) to increase the stability of the garnet electrolyte against moist air; the garnet LLZT‐2 wt % LiF (LLZT‐2LiF) has less Li2CO3 on the surface and shows a small interfacial resistance with Li metal, a solid polymer electrolyte, and organic‐liquid electrolytes. An all‐solid‐state Li/polymer/LLZT‐2LiF/LiFePO4 battery has a high Coulombic efficiency and long cycle life; a Li‐S cell with the LLZT‐2LiF electrolyte as a separator, which blocks the polysulfide transport towards the Li‐metal, also has high Coulombic efficiency and kept 93 % of its capacity after 100 cycles.  相似文献   

4.
5.
Developing high‐performance all‐solid‐state batteries is contingent on finding solid electrolyte materials with high ionic conductivity and ductility. Here we report new halide‐rich solid solution phases in the argyrodite Li6PS5Cl family, Li6?xPS5?xCl1+x, and combine electrochemical impedance spectroscopy, neutron diffraction, and 7Li NMR MAS and PFG spectroscopy to show that increasing the Cl?/S2? ratio has a systematic, and remarkable impact on Li‐ion diffusivity in the lattice. The phase at the limit of the solid solution regime, Li5.5PS4.5Cl1.5, exhibits a cold‐pressed conductivity of 9.4±0.1 mS cm?1 at 298 K (and 12.0±0.2 mS cm?1 on sintering)—almost four‐fold greater than Li6PS5Cl under identical processing conditions and comparable to metastable superionic Li7P3S11. Weakened interactions between the mobile Li‐ions and surrounding framework anions incurred by substitution of divalent S2? for monovalent Cl? play a major role in enhancing Li+‐ion diffusivity, along with increased site disorder and a higher lithium vacancy population.  相似文献   

6.
7.
8.
When two different materials come into contact, mobile carriers redistribute at the interface according to their potential difference. Such a charge redistribution is also expected at the interface between electrodes and solid electrolytes. The redistributed ions significantly affect the ion conduction through the interface. Thus, it is essential to determine the actual distribution of the ionic carriers and their potential to improve ion conduction. We succeeded in visualizing the ionic and potential profiles in the charge redistribution layer, or space‐charge layer (SCL), formed at the interface between a Cu electrode and Li‐conductive solid electrolyte using phase‐shifting electron holography and spatially resolved electron energy‐loss spectroscopy. These electron microscopy techniques clearly showed the Li‐ionic SCL, which dropped by 1.3 V within a distance of 10 nm from the interface. These techniques could contribute to the development of next‐generation electrochemical devices.  相似文献   

9.
Li47B3P14N42, the first lithium nitridoborophosphate, is synthesized by two different routes using a Li3N flux enabling a complete structure determination by single‐crystal X‐ray diffraction data. Li47B3P14N42 comprises three different complex anions: a cyclic [P3N9]12−, an adamantane‐like [P4N10]10−, and the novel anion [P3B3N13]15−. [P3B3N13]15− is the first species with condensed B/N and P/N substructures. Rietveld refinement, 6Li, 7Li, 11B, and 31P solid‐state NMR spectroscopy, FTIR spectroscopy, EDX measurements, and elemental analyses correspond well with the structure model from single‐crystal XRD. To confirm the mobility of Li+ ions, their possible migration pathways were evaluated and the temperature‐dependent conductivity was determined by impedance spectroscopy. With the Li3N flux route we gained access to a new class of lithium nitridoborophosphates, which could have a great potential for unprecedented anion topologies with interesting properties.  相似文献   

10.
Enabling all‐solid‐state Li‐ion batteries requires solid electrolytes with high Li ionic conductivity and good electrochemical stability. Following recent experimental reports of Li3YCl6 and Li3YBr6 as promising new solid electrolytes, we used first principles computation to investigate the Li‐ion diffusion, electrochemical stability, and interface stability of chloride and bromide materials and elucidated the origin of their high ionic conductivities and good electrochemical stabilities. Chloride and bromide chemistries intrinsically exhibit low migration energy barriers, wide electrochemical windows, and are not constrained to previous design principles for sulfide and oxide Li‐ion conductors, allowing for much greater freedom in structure, chemistry, composition, and Li sublattice for developing fast Li‐ion conductors. Our study highlights chloride and bromide chemistries as a promising new research direction for solid electrolytes with high ionic conductivity and good stability.  相似文献   

11.
12.
The coordination of N‐heterocyclic carbene (NHC) ligands to the surface of 3.7 nm palladium nanoparticles (PdNPs) can be unambiguously established by observation of Knight shift (KS) in the 13C resonance of the carbenic carbon. In order to validate this coordination, PdNPs with sizes ranging from 1.3 to 4.8 nm were prepared by thermal decomposition or reduction with CO of a dimethyl NHC PdII complex. NMR studies after 13CO adsorption established that the KS shifts the 13C resonances of the chemisorbed molecules several hundreds of ppm to high frequencies only when the particle exceeds a critical size of around 2 nm. Finally, the resonance of a carbenic carbon is reported to be Knight‐shifted to 600 ppm for 13C‐labelled NHCs bound to PdNPs of 3.7 nm. The observation of these very broad KS resonances was facilitated by using Car–Purcell–Meiboom–Gill (CPMG) echo train acquisition NMR experiments.  相似文献   

13.
14.
Metal–organic framework‐derived NiCo2.5S4 microrods wrapped in reduced graphene oxide (NCS@RGO) were synthesized for potassium‐ion storage. Upon coordination with organic potassium salts, NCS@RGO exhibits an ultrahigh initial reversible specific capacity (602 mAh g?1 at 50 mA g?1) and ultralong cycle life (a reversible specific capacity of 495 mAh g?1 at 200 mA g?1 after 1 900 cycles over 314 days). Furthermore, the battery demonstrates a high initial Coulombic efficiency of 78 %, outperforming most sulfides reported previously. Advanced ex situ characterization techniques, including atomic force microscopy, were used for evaluation and the results indicate that the organic potassium salt‐containing electrolyte helps to form thin and robust solid electrolyte interphase layers, which reduce the formation of byproducts during the potassiation–depotassiation process and enhance the mechanical stability of electrodes. The excellent conductivity of the RGO in the composites, and the robust interface between the electrodes and electrolytes, imbue the electrode with useful properties; including, ultrafast potassium‐ion storage with a reversible specific capacity of 402 mAh g?1 even at 2 A g?1.  相似文献   

15.
16.
17.
18.
19.
20.
Aqueous zinc‐ion batteries (ZIBs) are considered promising energy storage devices for large‐scale energy storage systems as a consequence of their safety benefits and low cost. In recent years, various vanadium‐based compounds have been widely developed to serve as the cathodes of aqueous ZIBs because of their low cost and high theoretical capacity. Furthermore, different energy storage mechanisms are observed in ZIBs based on vanadium‐based cathodes. In this Minireview, we present a comprehensive overview of the energy storage mechanisms and structural features of various vanadium‐based cathodes in ZIBs. Furthermore, we discuss strategies for improving the electrochemical performance of vanadium‐based cathodes; including, insertion of metal ions, adjustment of structural water, selection of conductive additives, and optimization of electrolytes. Finally, this Minireview offers insight into potential future directions in the design of innovative vanadium‐based electrode materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号