首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A sensitive method for the determination of mexiletine and lidocaine using surfactant‐assisted dispersive liquid–liquid microextraction coupled with capillary electrophoresis was developed. Triton X‐100 and dichloromethane were used as the dispersive agent and extraction solvent, respectively. After the extraction, mexiletine and lidocaine were analyzed using capillary electrophoresis with ultraviolet detection. The detection sensitivity was further enhanced through the use of field‐amplified sample stacking. Under optimal extraction and stacking conditions, the calibration curves were linear over a concentration range of 0.05–1.00 μM for mexiletine and 0.03–1.00 μM for lidocaine. The limits of detection (signal‐to‐noise ratio of 3) were 0.01 and 0.01 μM for mexiletine and lidocaine, respectively. An approximately 1141‐ to 1250‐fold improvement in sensitivity was observed for the two analytes compared with the injection of a standard solution without the surfactant‐assisted dispersive liquid–liquid microextraction and field‐amplified sample stacking procedures. This developed method was successfully applied to the determination of mexiletine and lidocaine in human urine and serum samples. Both precision and accuracy for urine and serum samples were less than 8.7 and 6.7%, respectively. The recoveries of the two analytes from urine and serum samples were 54.7–64.9% and 16.1–56.5%, respectively.  相似文献   

2.
Large‐volume sample stacking (LVSS) is commonly used as an effective online preconcentration method in capillary zone electrophoresis (CZE). In this paper, the method LVSS combined with CZE has been proposed to analyze camptothecin alkaloids. Optimum separation can be achieved in the following conditions: pH 9.0; 25mm borate buffer containing 20 mm sulfobutylether‐β‐cyclodextrin and 20 mm ionic liquid 1‐ethyl‐3‐methyllimidazole l ‐lactate; applied voltage 20 kV; and capillary temperature 25 °C. The LVSS was optimized as hydrodynamic injection 4 s at 5.0 psi and the polarity switching time was 0.17 min. Under the above conditions, the analytes could be separated completely in <20 min and the detector response was increased compared with conventional hydrodynamic injection. The limits of detection were between 0.20 and 0.78 μg/L. A good linearity was obtained with correlation coefficients from 0.9991 to 0.9997. The recoveries ranged from 97.72 to 103.2% and the results demonstrated excellent accuracy. In terms of the migration time and peak area, the experiment was reproducible. The experimental results indicated that baseline separation can be obtained and this method is suitable for the quantitative determination of camptothecin alkaloids in real samples.  相似文献   

3.
《Electrophoresis》2017,38(3-4):521-524
Acupuncture sample injection is a simple method to deliver well‐defined nanoliter‐scale sample plugs in PDMS microfluidic channels. This acupuncture injection method in microchip CE has several advantages, including minimization of sample consumption, the capability of serial injections of different sample solutions into the same microchannel, and the capability of injecting sample plugs into any desired position of a microchannel. Herein, we demonstrate that the simple and cost‐effective acupuncture sample injection method can be used for PDMS microchip‐based field amplified sample stacking in the most simplified straight channel by applying a single potential. We achieved the increase in electropherogram signals for the case of sample stacking. Furthermore, we present that microchip CGE of ΦX174 DNA‐HaeⅢ digest can be performed with the acupuncture injection method on a glass microchip while minimizing sample loss and voltage control hardware.  相似文献   

4.
Field amplified sample stacking (FASS) uses differential electrophoretic velocity of analyte ions in the high‐conductivity background electrolyte zone and low conductivity sample zone for increasing the analyte concentration. The stacking rate of analyte ions in FASS is limited by molecular diffusion and convective dispersion due to nonuniform electroosmotic flow (EOF). We present a theoretical scaling analysis of stacking dynamics in FASS and its validation with a large set of on‐chip sample stacking experiments and numerical simulations. Through scaling analysis, we have identified two stacking regimes that are relevant for on‐chip FASS, depending upon whether the broadening of the stacked peak is dominated by axial diffusion or convective dispersion. We show that these two regimes are characterized by distinct length and time scales, based on which we obtain simplified nondimensional relations for the temporal growth of peak concentration and width in FASS. We first verify the theoretical scaling behavior in diffusion‐ and convection‐dominated regimes using numerical simulations. Thereafter, we show that the experimental data of temporal growth of peak concentration and width at varying electric fields, conductivity gradients, and EOF exhibit the theoretically predicted scaling behavior. The scaling behavior described in this work provides insights into the effect of varying experimental parameters, such as electric field, conductivity gradient, electroosmotic mobility, and electrophoretic mobility of the analyte on the dynamics of on‐chip FASS.  相似文献   

5.
Zhu HD  Lü WJ  Li HH  Ma YH  Hu SQ  Chen HL  Chen XG 《Journal of chromatography. A》2011,1218(34):5867-5871
This paper for the first time describes the development of micelle to solvent stacking (MSS) to nonaqueous capillary electrophoresis (NACE). In this proposed MSS-NACE, sodium dodecyl sulfate (SDS) micelles transport, release, and focus analytes from the sample solution to the running buffer using methanol as their solvent. After the focusing step, the focused analytes were separated via NACE. The focusing mechanism and influencing factors were discussed using berberine (BBR) and jatrorrhizine (JTZ) as model compounds. And the optimum condition was obtained as following: 50 mM ammonium acetate, 6% (v/v) acetic acid and 10 mM SDS in redistilled water as sample matrix, 50 mM ammonium acetate and 6% (v/v) acetic acid in pure methanol as the running buffer, -20 kV focusing voltage with 30 min focusing time. Under these conditions, this method afforded limits of detection (S/N=3) of 0.002 μg/mL and 0.003 μg/mL for BBR and JTZ, respectively. In contrast to conventional NACE, the concentration sensitivity was improved 128-153-fold.  相似文献   

6.
Micelle to solvent stacking (MSS) is a new on-line sample concentration technique for charged analytes in capillary zone electrophoresis (CZE). Sample concentration in MSS mainly relies on the reversal in the effective electrophoretic mobility of the analyte at the boundary zone between the sample solution (S) and CZE background solution (BGS) inside the capillary. The basic condition for MSS is that the S is prepared in a matrix that contains an additive (i.e., micelles) which interacts with and has an opposite charge compared to the analytes. In addition, the BGS must contain a sufficient percentage of organic solvent. MSS was first reported for organic cations using anionic dodecyl sulfate micelles as additive in the S and methanol or acetonitrile as organic solvent in the BGS. Here, theoretical and experimental studies on MSS are described for organic anions using cationic cetyltrimethyl ammonium micelles as additive in the S and methanol as organic solvent in the BGS. Up to an order of magnitude improvement in concentration sensitivity was obtained for the test hypolipidaemic drugs using MSS in CZE with UV detection. The optimized method was also evaluated to the analysis of a spiked wastewater sample that was subjected to a simple extraction step.  相似文献   

7.
Two-step stacking of organic cations by sweeping and micelle to solvent stacking (MSS) in capillary zone electrophoresis (CZE) is presented. The simple procedure involves hydrodynamic injection of a micellar sodium dodecyl sulfate solution before the sample that is prepared without the micelles. The micelles sweep and transport the cations to the boundary zone between the sample and CZE buffer. The presence of organic solvent in the CZE buffer induces the second stacking step of MSS. The LODs obtained for the four beta blocker and two tricyclic antidepressant test drugs were 20-50 times better compared to typical injection.  相似文献   

8.
The common SDS microemulsion (i.e. 3.3% SDS, 0.8% octane, and 6.6% butanol) and organic solvents were investigated for the stacking of cationic drugs in capillary zone electrophoresis using a low pH separation electrolyte. The sample was prepared in the acidic microemulsion and a high percentage of organic solvent was included in the electrolyte at anodic end of capillary. The stacking mechanism was similar to micelle to solvent stacking where the micelles were replaced by the microemulsion for the transport of analytes to the organic solvent rich boundary. This boundary is found between the microemulsion and anodic electrolyte. The effective electrophoretic mobility of the cations reversed from the direction of the anode in the microemulsion to the cathode in the boundary. Microemulsion to solvent stacking was successfully achieved with 40% ACN in the anodic electrolyte and hydrodynamic sample injection of 21 s at 1000 mbar (equivalent to 30% of the effective length). The sensitivity enhancement factors in terms of peak height and corrected peak area were 15 to 35 and 21 to 47, respectively. The linearity R2 in terms of corrected peak area were >0.999. Interday precisions (%RSD, n = 6) were 3.3–4.0% for corrected peak area and 2.0–3.0% for migration time. Application to spiked real sample is also presented.  相似文献   

9.
Two-step stacking of organic anions by sweeping and micelle to solvent stacking (MSS) using cationic cetyltrimethylammonium micelles in co-electroosmotic flow (co-EOF) capillary zone electrophoresis (CZE) is described. The co-EOF condition where the direction of the EOF is the same as the test anions was satisfied by positive dynamic coating of a fused silica capillary with hexadimethrine bromide. The strategy was as follows. After conditioning the capillary with the background solution (BGS), a micellar solution (MS) was injected before the sample solution (S). The BGS, MS and S have similar conductivities. Voltage was applied at negative polarity. The analytes in the micelle-free S zone were swept by micelles from the MS. The swept analytes were brought by the micelles to the MSS boundary where the second stacking step was induced by the presence of organic solvent in the BGS. Finally was the separation of concentrated analytes by CZE. The effect of electrolyte concentration in the S, injection time of the MS and the S and surfactant concentration in the MS were studied. A 20-29, 17-33 and 18-21 times increase in peak height sensitivity was obtained for the test hypolipidaemic drugs (gemfibrozil, fluvastatin and atorvastatin), non-steroidal anti-inflammatory drugs (diflunisal, naproxen, ketoprofen, indoprofen and indomethacin), and herbicides (mecoprop and fenoprop), respectively. The LODs (S/N=3) were from 0.05 to 0.55 μg/mL. The intraday and interday repeatabilities (%RSD, n=12) in terms of retention time, corrected peak area, and peak heights was less than 3.6, 8.9, and 10.8%, respectively. The application of sweeping and MSS in co-EOF CZE together with a simple extraction procedure to a waste water sample spiked with the test herbicides was also demonstrated.  相似文献   

10.
An on-line sample stacking method, namely field-amplified sample injection, has been developed for the separation and determination of carnosine, anserine, and homocarnosine by capillary electrophoresis. Using electrokinetic injection, about 130- to 160-fold improvement of sensitivity was achieved without loss of separation efficiency when compared to conventional sample injection. For conventional injection, the samples were dissolved in running buffer and then hydrodynamically injected for 10 s (3.45 kPa). Various parameters affecting separation and sample stacking were optimized. Under optimum conditions, linear responses were obtained over two orders of magnitude and the detection limits (defined as S/N = 3) of carnosine, anserine, and homocarnosine were 1.5 x 10(-8) to 1.6 x 10(-8) mol/L.  相似文献   

11.
This article describes a method for the simultaneous quantitation of risperidone and its major metabolite, 9‐hydroxyrisperidone, in beagle dog plasma by field‐amplified sample injection in capillary zone electrophoresis. The separation was carried out at 25°C in a 48 cm × 75 µm fused‐silica capillary with an applied voltage of 20 kV using 60 mM NaH2PO4 buffer (pH 3.6). The detection wavelength was 280 nm. Clean‐up and preconcentration of plasma samples were conducted by 96‐well formatted liquid‐liquid extraction. In this study, this stacking technique provided a sensitivity enhancement of approximately 158 to 188 fold compared with the same sample without stacking. The method was suitably validated with respect to stability, specificity, linearity, lower limit of quantitation, accuracy, precision, and extraction recovery. Calibration curves exhibited good linearity (r> 0.995) over a wide concentration range of 2.5 to 200 ng/mL for both risperidone and 9‐hydroxyrisperidone. The intra‐ and interday precisions at the three quality control levels were less than 11.40%. The intra‐ and interday accuracies ranged from 87.90 to 107.17% for risperidone and from 88.43 to 105.92% for 9‐hydroxyrisperidone. All validation data were within the required limits. In conclusion, the method developed was successfully applied to pharmacokinetic studies of risperidone and 9‐hydroxyrisperidone in beagle dogs.  相似文献   

12.
A sensitive approach of capillary electrophoresis coupled with field‐amplified sample injection and transient isotachophoresis was developed for the simultaneous determination of two β‐blockers: sotalol and metoprolol. In this dual focusing technique, the samples were prepared via only dissolution in ultrapure water and then injected electrokinetically. Phosphate acted as both the background electrolyte and the leading electrolyte. Its optimized concentration was 80 mM. A total of 25 mM of glycine was used as the terminating electrolyte. Under optimum conditions, good separation of sotalol and metoprolol was achieved within 10 min. In comparison with the conventional method, the sensitivity enhancement factors were up to 1031 and 919 for sotalol and metoprolol, respectively. The proposed method was employed in the determination of sotalol and metoprolol in spiked human urine samples. The limits of detection and limits of quantitation obtained via ultraviolet detection were 5 and 12 ng/mL, respectively, for sotalol, and 10 and 25 ng/mL, respectively, for metoprolol. The intraday repeatability values were lower than 2.7 and 1.7% for peak area and migration time, respectively. The assay is a simple and efficient strategy with potential for application in clinical and biochemical laboratories for monitoring sotalol and metoprolol.  相似文献   

13.
A sensitive method of CZE‐ultraviolet (UV) detection based on the on‐line preconcentration strategy of field‐amplified sample injection (FASI) was developed for the simultaneous determination of five kinds of chlorophenols (CPs) namely 4‐chlorophenol (4‐CP), 2‐chlorophenol (2‐CP), 2,4‐dichlorophenol (2,4‐DCP), 2,4,6‐trichlorophenol (2,4,6‐TCP), and 2,6‐dichlorophenol (2,6‐DCP) in water samples. Several parameters affecting CZE and FASI conditions were systematically investigated. Under the optimal conditions, sensitivity enhancement factors for 4‐CP, 2‐CP, 2,4‐DCP, 2,4,6‐TCP, and 2,6‐DCP were 9, 27, 35, 43, and 43 folds, respectively, compared with the direct CZE, and the baseline separation was achieved within 5 min. Then, the developed FASI‐CZE‐UV method was applied to tap and lake water samples for the five CPs determination. The LODs (S/N = 3) were 0.0018–0.019 µg/mL and 0.0089–0.029 µg/mL in tap water and lake water, respectively. The values of LOQs in tap water (0.006–0.0074 µg/mL) were much lower than the maximum permissible concentrations of 2,4,6‐TCP, 2,4‐DCP, and 2‐CP in drinking water stipulated by World Health Organization (WHO) namely 0.3, 0.04, and 0.01 µg/mL, respectively, and thereby the method was suitable to detect the CPs according to WHO guidelines. Furthermore, the method attained high recoveries in the range of 83.0–119.0% at three spiking levels of five CPs in the two types of water samples, with relative standard deviations of 0.37–8.58%. The developed method was proved to be a simple, sensitive, highly automated, and efficient alternative to CPs determination in real water samples.  相似文献   

14.
Jiankuan Duan  Bin Hu  Man He 《Electrophoresis》2012,33(19-20):2953-2960
In this paper, a new method of nanometer‐sized alumina packed microcolumn SPE combined with field‐amplified sample stacking (FASS)–CE‐UV detection was developed for the speciation analysis of inorganic selenium in environmental water samples. Self‐synthesized nanometer‐sized alumina was packed in a microcolumn as the SPE adsorbent to retain Se(IV) and Se(VI) simultaneously at pH 6 and the retained inorganic selenium was eluted by concentrated ammonia. The eluent was used for FASS–CE–UV analysis after NH3 evaporation. The factors affecting the preconcentration of both Se(IV) and Se(VI) by SPE and FASS were studied and the optimal CE separation conditions for Se(IV) and Se(VI) were obtained. Under the optimal conditions, the LODs of 57 ng L?1 (Se(IV)) and 71 ng L?1 (Se(VI)) were obtained, respectively. The developed method was validated by the analysis of a certified reference material of GBW(E)080395 environmental water and the determined value was in a good agreement with the certified value. It was also successfully applied to the speciation analysis of inorganic selenium in environmental water samples, including Yangtze River water, spring water, and tap water.  相似文献   

15.
《Electrophoresis》2018,39(16):2117-2124
Goji berry, fruits of the plant Lycium barbarum L., has long been used as traditional medicine and functional food in China. In this work, a simple and easy‐operation on‐line concentration capillary electrophoresis (CE) for detection flavonoids in goji berry was developed by coupling of field amplified sample stacking (FASS) with an electroosmotic (EOF) pump driving water removal process. Due to the EOF pump and electrokinetic injection showing different influence on the concentration, the analytes injection condition should be systemically studied. Thereafter, the verification of the analytes injection conditions was achieved using response surface experimental design. Under the optimum conditions, 86–271 folds sensitivity enhancement upon normal capillary zone electrophoresis (CZE, 50 mbar × 5 s) were achieved for six flavonoids, and the detection limits ranged from 0.35 to 1.82 ng/mL; the LOQ ranged from 1.20 to 6.01 ng/mL. Eventually, the proposed method was applied to detect flavonoids in 30 goji berry samples from different habitats of China; and the results indicated that the flavonoids were rich in the eluent of 30–60% methanol, which provided a reference for extraction of goji berry flavonoids.  相似文献   

16.
A new trimethylamine amination polychloromethyl styrene nanolatex (TMAPL) and TMAPL coated capillary column (ccc‐TMAPL) were successfully prepared. The TMAPL coating was characterized with reversed steady EOF values of ca. ?16.8 × 10?5 cm2 V?1 s?1. It was applied to establish open‐tubular (OT) CEC and field‐amplified sample stacking (FASS) OT‐CEC methods for the determination of bromate in tap water. Compared to OT‐CEC, the LOD with FASS‐OT‐CEC was improved from 80 to 8 ng/mL. The developed FASS‐OT‐CEC method was practically used for the analysis of bromate in tap water samples with recoveries ranging from 93.6 to 103.5%.  相似文献   

17.
A simple, sensitive and low‐cost method using CE coupled with glucose‐β‐CD interaction assisted ACN stacking technique has been developed for quantification of trace amlodipine in dog plasma. The plasma samples were extracted with methyl tert‐butyl ether. The separation was performed at 25°C in a 31.2 cm × 75 μm fused‐silica capillary with an applied voltage of 15 kV. The BGE was composed of 6.25 mM borate/25 mM phosphate (pH 2.5) and 5 mg/mL glucose‐β‐CD. The detection wavelength was 200 nm. Because CD could diminish the interaction between drugs and matrix, and derivation groups of CD play an important role in separation performance, the effects of β‐CD, and its derivatives on the separation were studied at several concentrations (0, 2.5, 5.0, 10.0 mg/mL). In this study, organic solvent field‐amplified sample stacking technique in combination with glucose‐β‐CD enhanced the sensitivity about 60–70 folds and glucose‐β‐CD could effectively improve the peak shape. All the validation data, such as accuracy, precision extraction recovery, and stability, were within the required limits. The calibration curve was linear for amlodipine from 1 to 200 ng/mL. The method developed was successfully applied to the pharmacokinetic studies of amlodipine besylate in beagle dogs.  相似文献   

18.
Fan L  Cheng Y  Li Y  Chen H  Chen X  Hu Z 《Electrophoresis》2005,26(22):4345-4354
A simple, effective, and continuous online concentration method for the sensitive detection of alkaloids applying CE-flow injection analysis with head-column field-amplified sample stacking was developed. A series of samples was continuously introduced into the capillary by electrokinetic means without interrupting the high voltage. A short water plug was introduced by the EOF at the capillary inlet end prior to sample introduction. Under optimum conditions, 15-fold improvement in concentration sensitivity was achieved, giving an LOD of about 0.67 and 0.73 microg/mL for ephedrine (E) and pseudoephedrine (PE), respectively. The separation could be achieved within 4 min and sample throughput rate could reach up to 7/h. The repeatability (defined as RSD) was 3.62, 1.51% with peak area evaluation and 1.30, 2.58% with peak height evaluation for E and PE, respectively. This method has been successfully applied to the analysis of commercial pharmaceutical preparations containing E and PE, and the recoveries were 92.3-102.4%.  相似文献   

19.
This work presents a capillary electrophoresis methodology for the enantiodetermination of cathinones in urine employing a liquid–liquid extraction sample pretreatment. The cathinones were enantioseparated by adding a mixture of 8 mM 2‐hydroxypropyl β‐cyclodextrin and 5 mM β‐cyclodextrin to the background electrolyte, which consists of 70 mM of monosodium phosphate aqueous solution at pH 2.5. Field‐amplified sample injection was used as preconcentration strategy to improve the sensitivity. We studied various parameters that affect this stacking strategy, in particular, the sample solvent and its pH, the presence or absence of a low conductivity solvent plug introduced before the sample injection, the nature and volume of this plug, and the voltage and time of the electrokinetic injection of the sample. The optimum conditions were achieved by injecting a plug of isopropanol:H2O 50/50 at 50 mbar for 5 s prior to the electrokinetic injection of the sample prepared in an aqueous solution of HCl 10?6 M. The sensitivity enhancement factors were from 562 to 601 in terms of peak area and from 444 to 472 in terms of peak height. The method was validated by analyzing spiked urine samples, obtaining a linear range of 25 to 1000 ng/mL and limits of detection ranging from 15 to 45 ng/mL.  相似文献   

20.
Law WS  Zhao JH  Li SF 《Electrophoresis》2005,26(18):3486-3494
Field-amplified sample stacking (FASS) is used to separate basic proteins in a poly-(vinyl alcohol)-coated bubble cell capillary. To our knowledge, this is the first paper describing the on-column stacking of proteins (as cations) using FASS in bubble cell capillary. The bubble cell capillary is fabricated using a one-step method. Cetyltrimethylammonium chloride is added into the running buffer to reverse the EOF and, thus, to pump the water plug out during the sample stacking step. The effect of the water plug lengths and sample injection durations were investigated and optimized. The results obtained were compared with those for the normal capillary without bubble cell in terms of resolution and sensitivity enhancement. Under the optimal condition, this method can improve the sensitivity of the peak areas ranging from 5000- to 26 000-fold. The RSDs (n = 5) of the migration time and peak area are satisfactory (less than 0.6 and 12%, respectively). Application of the capillary electrophoresis method with bubble cell, FASS, and UV detection thereby leads to the determination of these proteins at concentrations ranging from 3 to 10 ng/mL, based on a signal-to-noise ratio of 3:1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号