首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Elucidating at atomic level how proteins interact and are chemically modified in cells represents a leading frontier in structural biology. We have developed a tailored solid‐state NMR spectroscopic approach that allows studying protein structure inside human cells at atomic level under high‐sensitivity dynamic nuclear polarization (DNP) conditions. We demonstrate the method using ubiquitin (Ub), which is critically involved in cellular functioning. Our results pave the way for structural studies of larger proteins or protein complexes inside human cells, which have remained elusive to in‐cell solution‐state NMR spectroscopy due to molecular size limitations.  相似文献   

2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
Molecular orientation in amorphous organic semiconducting thin‐film devices is an important issue affecting device performance. However, to date it has not been possible to analyze the “distribution” of the orientations. Although solid‐state NMR (ssNMR) spectroscopy can provide information on the “distribution” of molecular orientations, the technique is limited because of the small amount of sample in the device and the low sensitivity of ssNMR. Here, we report the first application of dynamic nuclear polarization enhanced ssNMR (DNP‐ssNMR) spectroscopy for the orientational analysis of amorphous phenyldi(pyren‐1‐yl)phosphine oxide (POPy2). The 31P DNP‐ssNMR spectra exhibited a sufficient signal‐to‐noise ratio to quantify the distribution of molecular orientations in amorphous films: the P=O axis of the vacuum‐deposited and drop‐cast POPy2 shows anisotropic and isotropic distribution, respectively. The different molecular orientations reflect the molecular origin of the different charge transport behaviors.  相似文献   

12.
Heterogeneous Brønsted acid catalysts are tremendously important in industry, particularly in catalytic cracking processes. Here we show that these Brønsted acid sites can be directly observed at natural abundance by 17O DNP surface‐enhanced NMR spectroscopy (SENS). We additionally show that the O−H bond length in these catalysts can be measured with sub‐picometer precision, to enable a direct structural gauge of the lability of protons in a given material, which is correlated with the pH of the zero point of charge of the material. Experiments performed on materials impregnated with pyridine also allow for the direct detection of intermolecular hydrogen bonding interactions through the lengthening of O−H bonds.  相似文献   

13.
14.
15.
Obtaining unambiguous resonance assignments remains a major bottleneck in solid‐state NMR studies of protein structure and dynamics. Particularly for supramolecular assemblies with large subunits (>150 residues), the analysis of crowded spectral data presents a challenge, even if three‐dimensional (3D) spectra are used. Here, we present a proton‐detected 4D solid‐state NMR assignment procedure that is tailored for large assemblies. The key to recording 4D spectra with three indirect carbon or nitrogen dimensions with their inherently large chemical shift dispersion lies in the use of sparse non‐uniform sampling (as low as 2 %). As a proof of principle, we acquired 4D (H)COCANH, (H)CACONH, and (H)CBCANH spectra of the 20 kDa bacteriophage tail‐tube protein gp17.1 in a total time of two and a half weeks. These spectra were sufficient to obtain complete resonance assignments in a straightforward manner without use of previous solution NMR data.  相似文献   

16.
17.
18.
19.
20.
There is a pressing need for new computational tools to integrate data from diverse experimental approaches in structural biology. We present a strategy that combines sparse paramagnetic solid‐state NMR restraints with physics‐based atomistic simulations. Our approach explicitly accounts for uncertainty in the interpretation of experimental data through the use of a semi‐quantitative mapping between the data and the restraint energy that is calibrated by extensive simulations. We apply our approach to solid‐state NMR data for the model protein GB1 labeled with Cu2+‐EDTA at six different sites. We are able to determine the structure to 0.9 Å accuracy within a single day of computation on a GPU cluster. We further show that in some cases, the data from only a single paramagnetic tag are sufficient for accurate folding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号