首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 389 毫秒
1.
The dependence of the viscosity of fluids on pressure has been well established by experiments and it needs to be taken into consideration in problems where there is a large variation of pressure in the flow domain. In this paper we consider the flow of a fluid in the annulus between two cylinders whose viscosity depends on the pressure. First we consider the steady flow in the annulus due to the rotation of one cylinder with respect to the other. Then we study the problem of flow in the annular region due to torsional and longitudinal oscillations of one cylinder with respect to the other. In both the problems considered the flow is found to be markedly different from that for the incompressible Navier–Stokes fluid with constant viscosity.  相似文献   

2.
We consider two compressible immiscible fluids in one space dimension and in the isentropic approximation. The first fluid is surrounded and in contact with the second one. As the sound speed of the first fluid diverges to infinity, we prove the rigorous convergence for the compressible to incompressible limit of the coupled dynamic of the two fluids.  相似文献   

3.
We consider the equations of motion to slightly compressible fluids and we prove that solutions converge, in the strong norm, to the solution of the equations of motion of incompressible fluids, as the Mach number goes to zero. From a physical point of view this means the following. Assume that we are dealing with a well-specified fluid, so slightly compressible that we assume it to be incompressible. Our result means that the distance between the (continuous) trajectories of the real and of the idealized solution is ‘small’ with respect to the natural metric, i.e. the metric that endows the data space.  相似文献   

4.
We prove existence and uniqueness theorems for weak solutions of equations describing stationary isothermic motion of a mixture of two viscous incompressible fluids with asymmetric stress tensor, in a bounded subset of ?3. The model of the flow we consider here assumes that some of coefficients characterizing isotropic properties of the fluid equal zero.  相似文献   

5.
We consider mixtures of compressible viscous fluids consisting of two miscible species. In contrast to the theory of non-homogeneous incompressible fluids where one has only one velocity field, here we have two densities and two velocity fields assigned to each species of the fluid. We obtain global classical solutions for quasi-stationary Stokes-like system with interaction term. This work was supported by SFB 611.  相似文献   

6.
This paper compares, in a general way, the predictions of the constitutive equations given by Rivlin and Ericksen, Oldroyd, and Walters. Whether we consider the rotational problems in cylindrical co-ordinates or in spherical polar co-ordinates, the effect of the non-Newtonicity on the secondary flows is collected in a single parameterα which can be explicitly expressed in terms of the non-Newtonian parameters that occur in each of the above-mentioned constitutive equations. Thus, for a given value ofα, all the three fluids will have identical secondary flows. It is only through the study of appropriate normal stresses that a Rivlin-Ericksen fluid can be distinguished from the other two fluids which are indistinguishable as long as this non-Newtonian parameter has the same value.  相似文献   

7.
We present results on optimal control of two-phase flows. The fluid is modeled by a thermodynamically consistent diffuse interface model and allows to treat fluids of different densities and viscosities. In earlier work we proposed an energy stable time discretization for this model that we now employ to derive existence of optimal controls for a time discrete optimal control problem. The control aim is to obtain a desired distribution of the two phases in the system. For this we investigate three control actions. We use tangential Dirichlet boundary control and distributed control. We further consider the inverse problem of finding an initial distribution such that the evolution over a given time horizon starting from this value is close to a desired distribution. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
Chang  Junxia  Ayhan  Hayriye  Dai  J.G.  Xia  Cathy H. 《Queueing Systems》2004,48(3-4):263-307
We study the optimal dynamic scheduling of different requests of service in a multiclass stochastic fluid model that is motivated by recent and emerging computing paradigms for Internet services and applications. In particular, our focus is on environments with specific performance guarantees for each class under a profit model in which revenues are gained when performance guarantees are satisfied and penalties are incurred otherwise. Within the context of the corresponding fluid model, we investigate the dynamic scheduling of different classes of service under conditions where the workload of certain classes may be overloaded for a transient period of time. Specifically, we consider the case with two fluid classes and a single server whose capacity can be shared arbitrarily among the two classes. We assume that the class 1 arrival rate varies with time and the class 1 fluid can more efficiently reduce the holding cost. Under these assumptions, we characterize the optimal server allocation policy that minimizes the holding cost in the fluid model when the arrival rate function for class 1 is known. Using the insights gained from this deterministic case, we study the stochastic fluid system when the arrival rate function for class 1 is random and develop various policies that are optimal or near optimal under various conditions. In particular, we consider two different types of heavy traffic regimes and prove that our proposed policies are strongly asymptotically optimal. Numerical examples are also provided to demonstrate further that these policies yield good results in terms of minimizing the expected holding cost.  相似文献   

9.
We consider heat-conducting viscous incompressible (not necessarily Newtonian) fluids under the general Stokesian constitutive hypotheses. Given a natural and mild condition on the stress tensor at vanishing velocity, which is satisfied for Newtonian fluids, we discuss the stability behavior of stationary states at which the fluid is at rest and at constant temperature. In particular, we prove the existence of global small strong solutions for rather general isothermal non-Newtonian fluids. We also study bifurcation problems and show that subcritical bifurcations can occur. This effect can be seen only if the full energy equation is taken into consideration, that is, if the energy dissipation term is not dropped, as is done in the usual Boussinesq approximation. Bibliography: 29 titles. Published inZapiski Nauchnykh Seminarov POMI, Vol. 233, 1996, pp. 9–29.  相似文献   

10.
In this article, we rigourously prove several asymptotical results for the flow curves of the Hébraud–Lequeux model, a rheological model which describes the behaviour of soft glassy fluids. This model has a control parameter α which governs the behaviour of the fluid at low shear rate. More precisely, we consider t([(g)\dot]){\tau({\dot{\rm \gamma}})} the stress in a block that is sheared at a constant rate [(g)\dot]{{\dot{\rm \gamma}}} and we prove that the system exhibits a transition in its behaviour at low shear rate when α goes through a critical value. The study is complicated by the fact that one of the parameter is only given implicitly and also we have to study two variable function in the neighbourhood of singularities.  相似文献   

11.
We consider self-gravitating fluids in cosmological spacetimes with Gowdy symmetry on the torus T3 and, in this class, we solve the singular initial value problem for the Einstein–Euler system of general relativity, when an initial data set is prescribed on the hypersurface of singularity. We specify initial conditions for the geometric and matter variables and identify the asymptotic behavior of these variables near the cosmological singularity. Our analysis of this class of nonlinear and singular partial differential equations exhibits a condition on the sound speed, which leads us to the notion of sub-critical, critical, and super-critical regimes. Solutions to the Einstein–Euler systems when the fluid is governed by a linear equation of state are constructed in the first two regimes, while additional difficulties arise in the latter one. All previous studies on inhomogeneous spacetimes concerned vacuum cosmological spacetimes only.  相似文献   

12.
In this paper, we are interested in the simultaneous flow of two immiscible fluid phases within a porous medium. We consider a two-phase flow model where the fluids are immiscible and there is no mass transfer between the phases. The medium is saturated by compressible/incompressible phase flows. We study the gas–water displacement without simplified assumptions on the state law of gas density. We establish an existence result for the nonlinear degenerate parabolic system based on new energy estimate on pressures.  相似文献   

13.
We present a mass conservative numerical scheme for reactive solute transport in porous media. The transport is modeled by a convection-diffusion-reaction equation, including equilibrium sorption. The scheme is based on the mixed finite element method (MFEM), more precisely the lowest-order Raviart-Thomas elements and one-step Euler implicit. The underlying fluid flow is described by the Richards equation, a possibly degenerate parabolic equation, which is also discretized by MFEM. This work is a continuation of Radu et al. (2008) and Radu et al. (2009) [1] and [2] where the algorithmic aspects of the scheme and the analysis of the discretization method are presented, respectively. Here we consider the Newton method for solving the fully discrete nonlinear systems arising on each time step after discretization. The convergence of the scheme is analyzed. In the case when the solute undergoes equilibrium sorption (of Freundlich type), the problem becomes degenerate and a regularization step is necessary. We derive sufficient conditions for the quadratic convergence of the Newton scheme.  相似文献   

14.
The authors consider the Euler equations for a compressible fluid in one space dimension when the equation of state of the fluid does not fulfill standard convexity assumptions and viscosity and capillarity effects are taken into account. A typical example of nonconvex constitutive equation for fluids is Van der Waals' equation. The first order terms of these partial differential equations form a nonlinear system of mixed (hyperbolic-elliptic) type. For a class of nonconvex equations of state, an existence theorem of traveling waves solutions with arbitrary large amplitude is established here. The authors distinguish between classical (compressive) and nonclassical (undercompressive) traveling waves. The latter do not fulfill Lax shock inequalities, and are characterized by the so-called kinetic relation, whose properties are investigated in this paper.  相似文献   

15.
The existence of a (global in time) solution to the Navier-Stokes equations for barotropic compressible fluids in a bounded interval is already known in the case of vanishing external force field. In this paper we consider these equations for time-independent forces and prove that: (i) there exists a global solution to the usual initial-boundary value problem; (ii) the density of the fluid is bounded and its infimum is greater than zero for infinite time only if the external forces and the pressure satisfy a compatibility condition (which is the same derived in [2] for the existence of a stationary solution having bounded and strictly positive density).  相似文献   

16.
The modelling of macrosegregation in the continuous casting of alloys normally requires resource-intensive computational fluid dynamics (CFD). By contrast, here we develop an asymptotic framework for the case when macrosegregation is driven by solidification shrinkage; as a first step, a binary alloy is considered. Systematic asymptotic analysis of the steady-state two-dimensional mass, momentum, heat and solute conservation equations in terms of the shrinkage parameter indicates that the overall problem can be reduced to a hierarchy of decoupled problems: a leading-order problem that is non-linear, and a sequence of linear problems, with the actual macrosegregation of the solute then being determined by means of one-dimensional quadrature. A numerical method that solves this sequence is then developed and implemented, and yields realistic macrosegregation profiles at low computational cost.  相似文献   

17.
We consider a Markov-modulated fluid queue with a finite buffer. It is assumed that the fluid flow is modulated by a background Markov chain which may have different transitions when the buffer content is empty or full. In Sakuma and Miyazawa (Asymptotic Behavior of Loss Rate for Feedback Finite Fluid Queue with Downward Jumps. Advances in Queueing Theory and Network Applications, pp. 195–211, Springer, Cambridge, 2009), we have studied asymptotic loss rate for this type of fluid queue when the mean drift of the fluid flow is negative. However, the null drift case is not studied. Our major interest is in asymptotic loss rate of the fluid queue with a finite buffer including the null drift case. We consider the density of the stationary buffer content distribution and derive it in matrix exponential forms from an occupation measure. This result is not only useful to get the asymptotic loss rate especially for the null drift case, but also it is interesting in its own light.  相似文献   

18.
In this paper we consider a SMP fluid model when the so-called BSNE has no solution and kernel distributions of input environment processes are not heavy-tailed. We prove that in this case we still can find the upper exponential bound for the buffer overflow probability and give the example showing that the lower bound is impossible in general.  相似文献   

19.
Harald Engler  Stefan Odenbach 《PAMM》2008,8(1):10951-10952
Material– and flow properties of magnetic fluids can be influenced by applying an external magnetic field. In this work we will particularly consider the onset of convection in magnetic fluids which is influenced by a magnetic force. In a horizontal magnetic fluid layer the force arises if a temperature gradient and an external magnetic field is applied. The behaviour of the onset of convection is investigated for a static and a time–modulated magnetic field. For the case of a static magnetic field the onset of convection depends on the strength of the field and for a time–modulated magnetic field an additional dependence on the frequency of magnetic field variation is found. The experimental results presented here confirm in principle the theoretical predictions about the influence of static and time–modulated magnetic forces on the onset of convection. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.

We study the dynamic behaviour of two viscous fluid films confined between two concentric cylinders rotating at a small relative velocity. It is assumed that the fluids are immiscible and that the volume of the outer fluid film is large compared to the volume of the inner one. Moreover, while the outer fluid is considered to have constant viscosity, the rheological behaviour of the inner thin film is determined by a strain-dependent power-law. Starting from a Navier–Stokes system, we formally derive evolution equations for the interface separating the two fluids. Two competing effects drive the dynamics of the interface, namely the surface tension and the shear stresses induced by the rotation of the cylinders. When the two effects are comparable, the solutions behave, for large times, as in the Newtonian regime. We also study the regime in which the surface tension effects dominate the stresses induced by the rotation of the cylinders. In this case, we prove local existence of positive weak solutions both for shear-thinning and shear-thickening fluids. In the latter case, we show that interfaces which are initially close to a circle converge to a circle in finite time and keep that shape for later times.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号