首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Molybdenum disulfide (MoS2) has been widely studied as a potential earth‐abundant electrocatalyst for the hydrogen‐evolution reaction (HER). Defect engineering and heteroelemental doping are effective methods to enhance the catalytic activity in the HER, so exploring an efficient route to simultaneously achieve in‐plane vacancy engineering and elemental doping of MoS2 is necessary. In this study, Zinc, a low‐cost and moderately active metal, has been used to realize this strategy by generation of sulfur vacancies and zinc doping on MoS2 in one step. Density functional theory calculations reveal that the zinc atoms not only lower the formation energy of S vacancies, but also help to decrease ΔGH of S‐vacancy sites near the Zn atoms. At an optimal zinc‐reduced MoS2 (Zn@MoS2) example, the activated basal planes contribute to the HER activity with an overpotential of ?194 mV at 10 mA cm?2 and a low Tafel slope of 78 mV/dec.  相似文献   

2.
Highly efficient hydrogen evolution reaction (HER) electrocatalyst will determine the mass distributions of hydrogen-powered clean technologies, while still faces grand challenges. In this work, a synergistic ligand modulation plus Co doping strategy is applied to 1T−MoS2 catalyst via CoMo-metal-organic frameworks precursors, boosting the HER catalytic activity and durability of 1T−MoS2. Confirmed by Cs corrected transmission electron microscope and X-ray absorption spectroscopy, the polydentate 1,2-bis(4-pyridyl)ethane ligand can stably link with two-dimensional 1T−MoS2 layers through cobalt sites to expand interlayer spacing of MoS2 (Co−1T−MoS2-bpe), which promotes active site exposure, accelerates water dissociation, and optimizes the adsorption and desorption of H in alkaline HER processes. Theoretical calculations indicate the promotions in the electronic structure of 1T−MoS2 originate in the formation of three-dimensional metal-organic constructs by linking π-conjugated ligand, which weakens the hybridization between Mo-3d and S-2p orbitals, and in turn makes S-2p orbital more suitable for hybridization with H-1s orbital. Therefore, Co−1T−MoS2-bpe exhibits excellent stability and exceedingly low overpotential for alkaline HER (118 mV at 10 mA cm−2). In addition, integrated into an anion-exchange membrane water electrolyzer, Co−1T−MoS2-bpe is much superior to the Pt/C catalyst at the large current densities. This study provides a feasible ligand modulation strategy for designs of two-dimensional catalysts.  相似文献   

3.
Endowing materials with specific functions that are not readily available is always of great importance, but extremely challenging. Co4N, with its beneficial metallic characteristics, has been proved to be highly active for the oxidation of water, while it is notoriously poor for catalyzing the hydrogen evolution reaction (HER), because of its unfavorable d‐band energy level. Herein, we successfully endow Co4N with prominent HER catalytic capability by tailoring the positions of the d‐band center through transition‐metal doping. The V‐doped Co4N nanosheets display an overpotential of 37 mV at 10 mA cm?2, which is substantially better than Co4N and even close to the benchmark Pt/C catalysts. XANES, UPS, and DFT calculations consistently reveal the enhanced performance is attributed to the downshift of the d‐band center, which helps facilitate the H desorption. This concept could provide valuable insights into the design of other catalysts for HER and beyond.  相似文献   

4.
As an electrocatalyst with abundant resources and great potential, molybdenum disulfide is regarded as one of the most likely alternatives to expensive noble‐metals catalysts. However, it is still a challenge to achieve large scale production of few‐layer MoS2 with enhancing activity of electrocatalytic hydrogen reaction at ambient conditions. Herein, we developed a simple environmentally friendly two‐step method, which included intercalation reaction and a subsequent electrochemical reduction reaction for mass preparation of defect‐rich desulfurized MoSx (D?MoSx) nanosheets with plentiful sulfur vacancies. The ratio of sulfur‐molybdenum atoms can be adjusted from 2 : 1 to 1.4 : 1 by regulating the desulfurization voltage. It was found that the HER catalytic activity of the D?MoSx was enhanced compared with that of pristine MoS2 (P?MoS2), the current density of D?MoSx (desulfurization at ?1.0 V) at ?0.3 V versus RHE was about 169% of the P?MoS2, and the Tafel slope decreased to 136 mV dec?1. This method can be widely applied to large‐scale preparation of other two‐dimensional materials.  相似文献   

5.
The title room‐temperature phase of (NH4)2(PO3F) is orthorhombic (Pna21) and is related to the β‐K2SO4 structure family. The title structure consists of ammonium cations, NH4+, and fluoro­phosphate anions, (PO3F)2?. These ions are connected by N—H?O hydrogen bonds. Two‐centre N—­H?F hydrogen bonds are not present in the structure. Phase transitions were detected at 251±2 and 274±2 K during cooling and heating, respectively.  相似文献   

6.
《中国化学快报》2023,34(11):108265
Molybdenum disulfide (MoS2) has shown significant promise as an economic hydrogen evolution reaction (HER) catalyst for hydrogen generation, but its catalytic performance is still lower than noble metal-based catalysists. Herein, a silver nanoparticles (Ag NPs)-decorated 1T/2H phase layered MoS2 electrocatalyst grown on titanium dioxide nanorod arrays (Ag NPs/1T(2H) MoS2/TNRs) was prepared through acid-tunable ammonium ion intercalation. Taking advantage of MoS2 layered structure and crystal phase controllability, as-prepared Ag NPs/1T(2H) MoS2/TNRs exhibited ultrahigh HER activity. As-proposed strategy combines facile hydrogen desorption (Ag NPs) with efficient hydrogen adsorption (1T/2H MoS2) effectively circumventes the kinetic limitation of hydrogen desorption by 1T/2H MoS2. The as-prepared Ag NPs/1T(2H) MoS2/TNRs electrocatalyst exhibited excellent HER activity in 0.5 mol/L H2SO4 with low overpotential (118 mV vs. reversible hydrogen electrode (RHE)) and small Tafel slope (38.61 mV/dec). The overpotential exhibts no obvious attenuation after 10 h of constant current flow. First-principles calculation demonstrates that as-prepared 1T/2H MoS2 exhibit a large capacity to store protons. These protons can be subsequently transferred to Ag NPs, which significantly increases the hydrogen coverage on the surface of Ag NPs in HER process and thus change the rate-determining step of HER on Ag NPs from water dissociation to hydrogen recombination. This study provides a unique strategy to improve the catalytic activity and stability for MoS2-based electrocatalyst.  相似文献   

7.
To achieve sustainable production of H2 fuel through water splitting, low‐cost electrocatalysts for the hydrogen‐evolution reaction (HER) and the oxygen‐evolution reaction (OER) are required to replace Pt and IrO2 catalysts. Herein, for the first time, we present the interface engineering of novel MoS2/Ni3S2 heterostructures, in which abundant interfaces are formed. For OER, such MoS2/Ni3S2 heterostructures show an extremely low overpotential of ca. 218 mV at 10 mA cm?2, which is superior to that of the state‐of‐the‐art OER electrocatalysts. Using MoS2/Ni3S2 heterostructures as bifunctional electrocatalysts, an alkali electrolyzer delivers a current density of 10 mA cm?2 at a very low cell voltage of ca. 1.56 V. In combination with DFT calculations, this study demonstrates that the constructed interfaces synergistically favor the chemisorption of hydrogen and oxygen‐containing intermediates, thus accelerating the overall electrochemical water splitting.  相似文献   

8.
Molybdenum sulfide (MoS2) is considered as an alternative material for commercial platinum catalysts for electrocatalytic hydrogen evolution reaction (HER). Improving the apparent HER activity of MoS2 to a level comparable to that of Pt is an essential premise for the commercial use of MoS2. In this work, a Zn-doping strategy is proposed to enhance the HER performance of MoS2. It is shown that tiny Zn doping into MoS2 leads to the enhancement of the electrochemical surface area, increases in proportion of HER active 1T phase in the material and formation of catalytic sites of higher intrinsic activity. These benefits result in a high-performance HER electrocatalyst with a low overpotential of 190 mV(@10 mA cm−2) and a low Tafel slope of 58 mV dec−1. The origin for the excellent electrochemical performance of the doped MoS2 is rationalized with both experimental and theoretical investigations.  相似文献   

9.
MoS2 has become particularly popular for its catalytic properties towards the hydrogen evolution reaction (HER). It has been shown that the metallic 1T phase of MoS2, obtained by chemical exfoliation after lithium intercalation, possesses enhanced catalytic activity over the semiconducting 2H phase due to the improved conductivity properties which facilitate charge‐transfer kinetics. Here we demonstrate a simple electrochemical method to precisely tune the electron‐transfer kinetics as well as the catalytic properties of both exfoliated and bulk MoS2‐based films. A controlled reductive or oxidative electrochemical treatment can alter the surface properties of the film with consequently improved or hampered electrochemical and catalytic properties compared to the untreated film. Density functional theory calculations were used to explain the electrochemical activation of MoS2. The electrochemical tuning of electrocatalytic properties of MoS2 opens the doors to scalable and facile tailoring of MoS2‐based electrochemical devices.  相似文献   

10.
The development of hydrogen evolution catalysts based on nonprecious metals is essential for the practical application of water‐splitting devices. Herein, the synthesis of Co9S8?MoS2 hierarchical nanoboxes (HNBs) as efficient catalysts for the hydrogen evolution reaction (HER) is reported. The surface of the hollow cubic structure was organized by CoMoS4 nanosheets formed through the reaction of MoS42? and Co2+ released from the cobalt zeolite imidazole framework (ZIF‐67) templates under reflux in a mixture of water/ethanol. The formation process for the CoMoS4 HNB structures was characterized by TEM images recorded at various reaction temperatures. The amorphous CoMoS4 HNBs were converted through sequential heat treatments into CoSx?MoS2 and Co9S8?MoS2 HNBs. Owing to their unique chemical compositions and structural features, Co9S8?MoS2 HNBs have a high specific surface area (124.6 m2 g?1) and superior electrocatalytic performances for the HER. The Co9S8?MoS2 HNBs exhibit a low overpotential (η10) of 106 mV, a low Tafel slope of 51.8 mV dec?1, and long‐term stability in an acidic medium. The electrocatalytic activity of Co9S8?MoS2 HNBs is superior to that of recently reported values, and these HNBs prove to be promising candidates for the HER.  相似文献   

11.
The crystal structure of the new melaminium salt, hexa­kis(2,4,6‐tri­amino‐1,3,5‐triazin‐1‐ium) tetrakis­(di­hydrogenphos­phate) mono­hydrogenphosphate tetrahydrate, 6C3H7N6+·4H2PO4?·HPO42?·4H2O, is built up from singly protonated melaminium residues, di­hydrogenphosphate and mono­hydrogen­phosphate anions, and water mol­ecules. The melaminium residues are interconnected by four N—H?N hydrogen bonds, forming chains along the [001] direction. These chains of melaminium residues form stacks aligned along [100]. The di­hydrogenphosphate anions interact with the mono­hydrogenphosphate anions via the H atoms and, together with hydrogen‐bonded dimers of the water mol­ecules, develop layers parallel to the (010) plane. The oppositely charged moieties interact via multiple N—H?O hydrogen bonds that stabilize the stacking structure.  相似文献   

12.
High‐resolution scanning electrochemical cell microscopy (SECCM) is used to image and quantitatively analyze the hydrogen evolution reaction (HER) catalytically active sites of 1H‐MoS2 nanosheets, MoS2, and WS2 heteronanosheets. Using a 20 nm radius nanopipette and hopping mode scanning, the resolution of SECCM was beyond the optical microscopy limit and visualized a small triangular MoS2 nanosheet with a side length of ca. 130 nm. The electrochemical cell provides local cyclic voltammograms with a nanoscale spatial resolution for visualizing HER active sites as electrochemical images. The HER activity difference of edge, terrace, and heterojunction of MoS2 and WS2 were revealed. The SECCM imaging directly visualized the relationship of HER activity and number of MoS2 nanosheet layers and unveiled the heterogeneous aging state of MoS2 nanosheets. SECCM can be used for improving local HER activities by producing sulfur vacancies using electrochemical reaction at the selected region.  相似文献   

13.
In the salt 1‐methylpiperazine‐1,4‐diium bis(dihydrogen phosphate), C5H13N22+·2H2PO4, (I), and the solvated salt 2‐(pyridin‐2‐yl)pyridinium dihydrogen phosphate–orthophosphoric acid (1/1), C10H9N2+·H2PO4·H3PO4, (II), the formation of O—H...O and N—H...O hydrogen bonds between the dihydrogen phosphate (H2PO4) anions and the cations constructs a three‐ and two‐dimensional anionic–cationic network, respectively. In (I), the self‐assembly of H2PO4 anions forms a two‐dimensional pseudo‐honeycomb‐like supramolecular architecture along the (010) plane. 1‐Methylpiperazine‐1,4‐diium cations are trapped between the (010) anionic layers through three N—H...O hydrogen bonds. In solvated salt (II), the self‐assembly of H2PO4 anions forms a two‐dimensional supramolecular architecture with open channels projecting along the [001] direction. The 2‐(pyridin‐2‐yl)pyridinium cations are trapped between the open channels by N—H...O and C—H...O hydrogen bonds. From a study of previously reported structures, dihydrogen phosphate anions show a supramolecular flexibility depending on the nature of the cations. The dihydrogen phosphate anion may be suitable for the design of the host lattice for host–guest supramolecular systems.  相似文献   

14.
Proton reduction is one of the most fundamental and important reactions in nature. MoS2 edges have been identified as the active sites for hydrogen evolution reaction (HER) electrocatalysis. Designing molecular mimics of MoS2 edge sites is an attractive strategy to understand the underlying catalytic mechanism of different edge sites and improve their activities. Herein we report a dimeric molecular analogue [Mo2S12]2?, as the smallest unit possessing both the terminal and bridging disulfide ligands. Our electrochemical tests show that [Mo2S12]2? is a superior heterogeneous HER catalyst under acidic conditions. Computations suggest that the bridging disulfide ligand of [Mo2S12]2? exhibits a hydrogen adsorption free energy near zero (?0.05 eV). This work helps shed light on the rational design of HER catalysts and biomimetics of hydrogen‐evolving enzymes.  相似文献   

15.
Molybdenum disulfide (MoS2) has been regarded as a favorable photocatalytic co‐catalyst and efficient hydrogen evolution reaction (HER) electrocatalyst alternative to expensive noble‐metals catalysts, owing to earth‐abundance, proper band gap, high surface area, and fast electron transfer ability. In order to achieve a higher catalytic efficiency, defects strategies such as phase engineering and vacancy introduction are considered as promising methods for natural 2H‐MoS2 to increase its active sites and promote electron transfer rate. In this study, we report a new two‐step defect engineering process to generate vacancies‐rich hybrid‐phase MoS2 and to introduce Ru particles at the same time, which includes hydrothermal reaction and a subsequent hydrogen reduction. Compositional and structural properties of the synthesized defects‐rich MoS2 are investigated by XRD, XPS, XAFS and Raman measurements, and the electrochemical hydrogen evolution reaction performance, as well as photocatalytic hydrogen evolution performance in the ammonia borane dehydrogenation are evaluated. Both catalytic activities are boosted with the increase of defects concentrations in MoS2, which ascertains that the defects engineering is a promising route to promote catalytic performance of MoS2.  相似文献   

16.
MoS2 particles with different size distributions were prepared by simple ultrasonication of bulk MoS2 followed by gradient centrifugation. Relative to the inert microscale MoS2, nanoscale MoS2 showed significantly improved catalytic activity toward the oxygen‐reduction reaction (ORR) and hydrogen‐evolution reaction (HER). The decrease in particle size was accompanied by an increase in catalytic activity. Particles with a size of around 2 nm exhibited the best dual ORR and HER performance with a four‐electron ORR process and an HER onset potential of ?0.16 V versus the standard hydrogen electrode (SHE). This is the first investigation on the size‐dependent effect of the ORR activity of MoS2, and a four‐electron transfer route was found. The exposed abundant Mo edges of the MoS2 nanoparticles were proven to be responsible for the high ORR catalytic activity, whereas the origin of the improved HER activity of the nanoparticles was attributed to the plentiful exposed S edges. This newly discovered process provides a simple protocol to produce inexpensive highly active MoS2 catalysts that could easily be scaled up. Hence, it opens up possibilities for wide applications of MoS2 nanoparticles in the fields of energy conversion and storage.  相似文献   

17.
Increasing the active edge sites of molybdenum disulfide (MoS2) is an efficient strategy to improve the overall activity of MoS2 for the hydrogen‐evolution reaction (HER). Herein, we report a strategy to synthesize the ultrasmall donut‐shaped Cu7S4@MoS2 hetero‐nanoframes with abundant active MoS2 edge sites as alternatives to platinum (Pt) as efficient HER electrocatalysts. These nanoframes demonstrate an ultrahigh activity with 200 mA cm?2 current density at only 206 mV overpotential using a carbon‐rod counter electrode. The finding may provide guidelines for the design and synthesis of efficient and non‐precious chalcogenide nanoframe catalysts.  相似文献   

18.
The title compound (C6H7NO3S) exists as a zwitterion (4‐ammonio­benzene­sulfonate), +H3NC6H4SO3?, and these units are linked into a three‐dimensional framework by two distinct two‐centre N—H?O hydrogen bonds [H?O 1.84 and 1.87 Å; N?O 2.767 (2) and 2.746 (2) Å; N—H?O 166 and 172°] and a planar three‐centre N—H?(O)2 hydrogen bond [H?O 2.03 and 2.37 Å; N?O 2.816 (2) and 2.877 (2) Å; N—H?O 162 and 111°; O?H?O 86°].  相似文献   

19.
The electrochemical nitrogen reduction reaction (NRR) is a promising energy‐efficient and low‐emission alternative to the traditional Haber–Bosch process. Usually, the competing hydrogen evolution reaction (HER) and the reaction barrier of ambient electrochemical NRR are significant challenges, making a simultaneous high NH3 formation rate and high Faradic efficiency (FE) difficult. To give effective NRR electrocatalysis and suppressed HER, the surface atomic structure of W18O49, which has exposed active W sites and weak binding for H2, is doped with Fe. A high NH3 formation rate of 24.7 μg h?1 mgcat?1 and a high FE of 20.0 % are achieved at an overpotential of only ?0.15 V versus the reversible hydrogen electrode. Ab initio calculations reveal an intercalation‐type doping of Fe atoms in the tunnels of the W18O49 crystal structure, which increases the oxygen vacancies and exposes more W active sites, optimizes the nitrogen adsorption energy, and facilitates the electrocatalytic NRR.  相似文献   

20.
《中国化学快报》2022,33(11):4761-4765
Typically, rational interfacial engineering can effectively modify the adsorption energy of active hydrogen molecules to improve water splitting efficiency. NiFe layered double hydroxide (NiFe LDH) composite, an efficient oxygen evolution reaction (OER) catalyst, suffers from slow hydrogen evolution reaction (HER) kinetics, restricting its application for overall water splitting. Herein, we construct the hierarchical MoS2/NiFe LDH nanosheets with a heterogeneous interface used for HER and OER. Benefiting the hierarchical heterogeneous interface optimized hydrogen Gibbs free energy, tens of exposed active sites, rapid mass- and charge-transfer processes, the MoS2/NiFe LDH displays a highly efficient synergistic electrocatalytic effect. The MoS2/NiFe LDH electrode in 1 mol/L KOH exhibits excellent HER activity, only 98 mV overpotential at 10 mA/cm2. Significantly, when it assembled as anode and cathode for overall water splitting, only 1.61 V cell voltage was required to achieve 10 mA/cm2 with excellent durability (50 h).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号