首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we devise a simple way to explicitly construct the Riemann theta function periodic wave solution of the nonlinear partial differential equation. The resulting theory is applied to the Hirota–Satsuma shallow water wave equation. Bilinear forms are presented to explicitly construct periodic wave solutions based on a multidimensional Riemann theta function. We obtain the one‐periodic and two‐periodic wave solutions of the equation. The relations between the periodic wave solutions and soliton solutions are rigorously established. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
Extend three-wave method for the (1+2)-dimensional Ito equation   总被引:1,自引:0,他引:1  
In this work, Extend three-wave method (ETM) is used to construct the novel multi-wave solutions of the (1+2)-dimensional Ito equation. As a result, three-soliton solution, doubly periodic solitary wave solutions, periodic two solitary wave solutions are obtained. It is shown that the Extend three-wave method may provide us with a straightforward and effective mathematical tool for seeking multi-wave solutions of higher dimensional nonlinear evolution equations.  相似文献   

3.
Wronskian and Grammian formulations are established for a (3 + 1)-dimensional generalized KP equation, based on the Plücker relation and the Jacobi identity for determinants. Generating functions for matrix entries satisfy a linear system of partial differential equations involving a free parameter. Examples of Wronskian and Grammian solutions are computed and a few particular solutions are plotted.  相似文献   

4.
5.
6.
7.
Exact periodic solitary wave solutions for Kadomtsev-Petviashvili equation are obtained by using the Hirota bilinear method. The result shows that there exists periodic solitary waves in the different directions for (2 + 1)-dimensional Kadomtsev-Petviashvili equation.  相似文献   

8.
In this work we derive a new completely integrable dispersive equation. The equation is obtained by combining the Sawada–Kotera (SK) equation with the sense of the Kadomtsev–Petviashvili (KP) equation. The newly derived Sawada–Kotera–Kadomtsev–Petviashvili (SK–KP) equation is studied by using the tanh–coth method, to obtain single-soliton solution, and by the Hirota bilinear method, to determine the N-soliton solutions. The study highlights the significant features of the employed methods and its capability of handling completely integrable equations.  相似文献   

9.
Exact soliton solutions to the (2 + 1)-dimensional Ito equation are studied based on the idea of extended homoclinic test and bilinear method. Some explicit solutions, such as triangle function solutions, soliton solutions, doubly-periodic wave solutions and periodic solitary wave solutions, are obtained. It shows that the (2 + 1)-dimensional Ito equation has richer solutions. Besides, the elastic interactions of the solutions and their corresponding physical meaning are discussed.  相似文献   

10.
This paper study the traveling wave solutions of the Casimir equation for the Ito system. Since the derivative function of the wave function is a solution of a planar dynamical system, from which the exact parametric representations of solutions and bifurcations of phase portraits can be obtained. Thus, we show that corresponding to the compacton solutions of the derivative function system, there exist uncountably infinite kink wave solutions of the wave equation. Corresponding to the positive or negative periodic solutions and homoclinic solutions of the derivative function system, there exist unbounded wave solutions of the wave function equation.  相似文献   

11.
A (2+1)-dimensional generalized potential Kadomtsev-Petviashvili (gpKP) equation which possesses a Hirota bilinear form is constructed. The lump waves are derived by using a positive quadratic function solution. By combining an exponential function with a quadratic function, an interaction solution between a lump and a one-kink soliton is obtained. Furthermore, an interaction solution between a lump and a two-kink soliton is presented by mixing two exponential functions with a quadratic function. This type of lump wave just appears to a line $k_2x+k_3y+k_4t+k_5 \sim 0$. We call this kind of lump wave is a special rogue wave. Some visual figures are depicted to explain the propagation phenomena of these interaction solutions.  相似文献   

12.
In this paper, we considered the multiple rogue wave solutions of a (3+1)-dimensional Hirota bilinear equation by using a symbolic computation approach. Based on the bilinear form of this equation, the first-order rogue waves, the second-order rogue waves and the third-order rogue waves are presented. Moreover, some basic properties of multiple rogue waves and their collision structures are explained by drawing the three dimensional plot.  相似文献   

13.
Through symbolic computation with Maple, the (2+1)-dimensional B-type Kadomtsev-Petviashvili(BKP) equation is considered. The generalized bilinear form not the Hirota bilinear method is the starting point in the computation process in this paper. The resulting lump solutions contain six free parameters, four of which satisfy two determinant conditions to guarantee the analyticity and rational localization of the solutions, while the others are arbitrary. Finally, the dynamic properties of these solutions are shown in figures by choosing the values of the parameters.  相似文献   

14.
In this paper, the 2+1 dimensional Ablowitz-Kaup-Newell-Segur (AKNS) equation which obtained from the potential Boiti-Leon-Manna-Pempi nelli (pBLMP) equation, is introduced. Through the bilinear method and ansatz technique, the rational solutions consisting of rogue wave and lump soliton solutions are constructed, where we discuss the condition of guaranteeing the positiveness and analyticity of the lump solutions. The collection of a quadratic function with an exponential function describing rational-exponential solutions is proved, the interaction consisting of one lump and one soliton with fission and fusion phenomena. The second kind of interaction comprises the line rogue wave and soliton solution, which is inelastic. With the usage of the extended homoclinic test approach, the homoclinic breather-wave solution is derived. The characteristics of these various solutions are exhibited and illustrated graphically.  相似文献   

15.
In this paper we consider a special fifth-order KdV equation with constant coefficients and we obtain traveling wave solutions for it, using the projective Riccati equation method. By mean of a scaling, exact solutions to general Kaup-Kupershmidt (KK) equation are obtained. As a particular case, exact solutions to standard KK equation can be derived. Using the same method, we obtain exact solutions to standard Ito equation. By mean of scaling, new exact solutions to general Ito equation are formally derived.  相似文献   

16.
A system of linear conditions is presented for Wronskian and Grammian solutions to a (3+1)-dimensional generalized vcKP equation.The formulations of these solutions require a constraint on variable coefficients.  相似文献   

17.
In this work, the completely integrable sixth-order nonlinear Ramani equation and a coupled Ramani equation are studied. Multiple soliton solutions and multiple singular soliton solutions are formally derived for these two equations. The Hirota’s bilinear method is used to determine the two distinct structures of solutions. The resonance relations for the three cases are investigated.  相似文献   

18.
The present article deals with multi-waves and breather wave solutions of the generalized Bogoyavlensky-Konopelchenko equation by virtue of the Hirota bilinear operator method and the semi-inverse variational principle. The obtained solutions for solving the current equation represent some localized waves including soliton, periodic, and cross-kink solutions in which have been investigated by the approach of the bilinear method. With certain parameter constraints in the multi-waves and breather, all cases of the periodic and cross-kink solutions can be captured from the one and two soliton(s). The obtained solutions are extended with numerical simulation to analyze graphically, which results into 1- and 2-soliton solutions and also periodic and cross-kink solutions profiles, that will be extensively used to report many attractive physical phenomena in the fields of acoustics, heat transfer, fluid dynamics, classical mechanics, and so on.  相似文献   

19.
A novel type of exact rogue wave is found for the (1+1)-dimensional Ito equation, which is generated by the interaction solution between an algebraic localized soliton (named “lump”) and an exponentially localized twin soliton. In addition, the interaction solution among triangular periodic wave and twin soliton is also proposed. Three special interaction phenomenons are displayed by some visual figures, respectively.  相似文献   

20.
With the generalized bilinear operators based on a prime number p=3, a Hirota-Satsuma-like equation is proposed. Rational solutions are generated and graphically described by using symbolic computation software Maple.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号