首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reaction mechanism of 1,2×n‐deoxydehydration (DODH; n=1, 2, 3 …) reactions with 1‐butanol as a reductant in the presence of methyltrioxorhenium(VII) catalyst has been investigated by DFT. The reduced rhenium compound, methyloxodihydroxyrhenium(V), serves as the catalytically relevant species in both allylic alcohol isomerization and subsequent DODH processes. Compared with three‐step pathway A, involving [1,3]‐transposition of allylic alcohols, direct two‐step pathway B is an alternative option with lower activation barriers. The rate‐limiting step of the DODH reaction is the first hydrogen transfer in methyltrioxorhenium(VII) reduction. Moreover, the increase in the distance between two hydroxyl groups in direct 1,2×n‐DODH reactions for C4 and C6 diols results in a higher barrier height.  相似文献   

2.
The mechanism of the molybdenum‐catalyzed deoxydehydration (DODH) of vicinal diols has been investigated using density functional theory. The proposed catalytic cycle involves condensation of the diol with an MoVI oxo complex, oxidative cleavage of the diol resulting in an MoIV complex, and extrusion of the alkene. We have compared the proposed pathway with several alternatives, and the results have been corroborated by comparison with the molybdenum‐catalyzed sulfoxide reduction recently published by Sanz et al. and with experimental observations for the DODH itself. Improved understanding of the mechanism should expedite future optimization of molybdenum‐catalyzed biomass transformations.  相似文献   

3.
The production of bulk chemicals and fuels from renewable bio‐based feedstocks is of significant importance for the sustainability of human society. Adipic acid, as one of the most‐demanded drop‐in chemicals from a bioresource, is used primarily for the large‐volume production of nylon‐6,6 polyamide. It is highly desirable to develop sustainable and environmentally friendly processes for the production of adipic acid from renewable feedstocks. However, currently there is no suitable bio‐adipic acid synthesis process. Demonstrated herein is the highly efficient synthetic protocol for the conversion of mucic acid into adipic acid through the oxorhenium‐complex‐catalyzed deoxydehydration (DODH) reaction and subsequent Pt/C‐catalyzed transfer hydrogenation. Quantitative yields (99 %) were achieved for the conversion of mucic acid into muconic acid and adipic acid either in separate sequences or in a one‐step process.  相似文献   

4.
Catalytic deoxydehydration (DODH) of vicinal diols is studied. We find that NH4ReO4 (ammonium perrhenate, APR) catalyzes the DODH of glycols to alkenes by sacrificial alcohol (2,4-dimethyl-3-pentanol) at 140–165 °C. The product yields range from good to excellent and no isomers detected. The catalytic DODH reaction of glycols to alkene is of potential value for the production of chemicals and fuels from the renewable biomass-derived polyols.
  相似文献   

5.
The conversion of renewable cellulosic biomass into hydrocarbons has attracted significant attention with a growing demand of sustainability. MeReO3 catalyzes the deoxydehydration (DODH) of glycols and epoxides to alkenes by primary and secondary alcohols (5-nonanol, 3-octanol, 1-butanol) in the benzene solvent. The product yield range from moderate to excellent.  相似文献   

6.
The preparation of chemically modified graphene (CMG) generally involves the reduction of graphite oxide (GO) by using various reducing reagents. Herein, we report a free‐radical‐promoted synthesis of CMG, which does not require any conventional reductant. We demonstrated that the phenyl free radical can efficiently promote the conversion of GO into CMG under mild conditions and produces phenyl‐functionalized CMG. This pseudo‐“reduction” process is attributed to a free‐radical‐mediated elimination of the surface‐attached oxygen‐containing functionalities. This work illustrates a new strategy for preparing CMG that is alternative to the conventional means of chemical reduction. Furthermore, the phenyl‐functionalized graphene shows an excellent performance as an electrode material for lithium‐battery applications.  相似文献   

7.
We report a method for the electrochemical deuteration of α,β‐unsaturated carbonyl compounds under catalyst‐ and external‐reductant‐free conditions, with deuteration rates as high as 99 % and yields up to 91 % in 2 h. The use of graphite felt for both the cathode and the anode was key to ensuring chemoselectivity and high deuterium incorporation under neutral conditions without the need for an external reductant. This method has a number of advantages over previously reported deuteration reactions that use stoichiometric metallic reductants. Mechanistic experiments showed that O2 evolution at the anode not only eliminates the need for an external reductant but also regulates the pH of the reaction mixture, keeping it approximately neutral.  相似文献   

8.
A method for electrophilic sulfenylation by organophosphorus‐catalyzed deoxygenative O‐atom transfer from sulfonyl chlorides is reported. This C?S bond‐forming reaction is catalyzed by a readily available small‐ring phosphine (phosphetane) in conjunction with a hydrosilane terminal reductant to afford a general entry to sulfenyl electrophiles, including valuable trifluoromethyl, perfluoroalkyl, and heteroaryl derivatives that are otherwise difficult to access. Mechanistic investigations indicate that the twofold deoxygenation of the sulfonyl substrate proceeds by the intervention of an off‐cycle resting state thiophosphonium ion. The catalytic method represents an operationally simple protocol using a stable phosphine oxide as a precatalyst and exhibits broad functional‐group tolerance.  相似文献   

9.
The development of biomimetic chemistry based on the NAD(P)H with hydrogen gas as terminal reductant is a long‐standing challenge. Through rational design of the chiral and regenerable NAD(P)H analogues based on planar‐chiral ferrocene, a biomimetic asymmetric reduction has been realized using bench‐stable Lewis acids as transfer catalysts. A broad set of alkenes and imines could be reduced with up to 98 % yield and 98 % ee, likely enabled by enzyme‐like cooperative bifunctional activation. This reaction represents the first general biomimetic asymmetric reduction (BMAR) process enabled by chiral and regenerable NAD(P)H analogues. This concept demonstrates catalytic utility of a chiral coenzyme NAD(P)H in asymmetric catalysis.  相似文献   

10.
Described herein is that the catalytic construction of N‐substituted five‐ and six‐membered lactams from keto acids with primary amines by reductive amination, using an indium/silane combination. This relatively benign and safe catalyst/reductant system tolerates the use of a variety of functional groups, especially ones that are reduction‐sensitive. A direct switch from synthesizing lactams to synthesizing cyclic amines is achieved by changing the catalyst from In(OAc)3 to InI3. This conversion occurs by further reduction of the lactam using the indium/silane pair.  相似文献   

11.
An organocatalytic method for the modular synthesis of diverse N‐aryl and N‐alkyl azaheterocycles (indoles, oxindoles, benzimidazoles, and quinoxalinediones) is reported. The method employs a small‐ring organophosphorus‐based catalyst (1,2,2,3,4,4‐hexamethylphosphetane P‐oxide) and a hydrosilane reductant to drive the conversion of ortho‐functionalized nitroarenes into azaheterocycles through sequential intermolecular reductive C?N cross coupling with boronic acids, followed by intramolecular cyclization. This method enables the rapid construction of azaheterocycles from readily available building blocks, including a regiospecific approach to N‐substituted benzimidazoles and quinoxalinediones.  相似文献   

12.
The many applications of photon upconversion—conversion of low‐energy photons into high‐energy photons—raises the question of the possibility of “electron upconversion”. In this Review, we illustrate how the reduction potential can be increased by using the free energy of exergonic chemical reactions. Electron (reductant) upconversion can produce up to 20–25 kcal mol?1 of additional redox potential, thus creating powerful reductants under mild conditions. We will present the two common types of electron‐upconverting systems—dissociative (based on unimolecular fragmentations) and associative (based on the bimolecular formation of three‐electron bonds). The possible utility of reductant upconversion encompasses redox chain reactions in electrocatalytic processes, photoredox cascades, design of peroxide‐based medicines, firefly luminescence, and reductive repair of DNA photodamage.  相似文献   

13.
Cross‐electrophile coupling of aryl halides with alkyl halides has thus far been primarily conducted with stoichiometric metallic reductants in amide solvents. This report demonstrates that the use of tetrakis(dimethylamino)ethylene (TDAE) as an organic reductant enables the use of non‐amide solvents, such as acetonitrile or propylene oxide, for the coupling of benzyl chlorides and alkyl iodides with aryl halides. Furthermore, these conditions work for several electron‐poor heterocycles that are easily reduced by manganese. Finally, we demonstrate that TDAE addition can be used as a control element to ‘hold’ a reaction without diminishing yield or catalyst activity.  相似文献   

14.
We report a redox‐neutral formylation of aryl chlorides that proceeds through selective 2‐functionalization of 1,3‐dioxolane through nickel and photoredox catalysis. This scalable benchtop approach provides a distinct advantage over traditional reductive carbonylation in that no carbon monoxide, pressurized gas, or stoichiometric reductant is employed. The mild conditions give unprecedented scope from abundant and complex aryl chloride starting materials.  相似文献   

15.
A unique nickel/organic photoredox co‐catalyzed asymmetric reductive cross‐coupling between α‐chloro esters and aryl iodides is developed. This cross‐electrophile coupling reaction employs an organic reductant (Hantzsch ester), whereas most reductive cross‐coupling reactions use stoichiometric metals. A diverse array of valuable α‐aryl esters is formed under these conditions with high enantioselectivities (up to 94 %) and good yields (up to 88 %). α‐Aryl esters represent an important family of nonsteroidal anti‐inflammatory drugs. This novel synergistic strategy expands the scope of Ni‐catalyzed reductive asymmetric cross‐coupling reactions.  相似文献   

16.
Sulfonyl‐derived functional groups populate a broad range of useful molecules and materials, and despite a variety of preparative methods being available, processes which introduce the most basic sulfonyl building block, sulfur dioxide, using catalytic methods, are rare. Described herein is a simple reaction system consisting of the sulfur dioxide surrogate DABSO, triethylamine, and a palladium(0) catalyst for effective convertion of a broad range of aryl and heteroaryl halides into the corresponding ammonium sulfinates. Key features of this gas‐ and reductant‐free reaction include the low loadings of palladium (1 mol %) and ligand (1.5 mol %) which can be employed, and the use of isopropyl alcohol as both a solvent and formal reductant. The ammonium sulfinate products are converted in situ into a variety of sulfonyl‐containing functional groups, including sulfones, sulfonyl chlorides, and sulfonamides.  相似文献   

17.
Photochemical enantioselective nickel‐catalyzed cross‐coupling reactions are difficult to implement. We report a visible‐light‐mediated strategy that successfully couples symmetrical anhydrides and 4‐alkyl dihydropyridines (DHPs) to afford enantioenriched α‐substituted ketones under mild conditions. The chemistry does not require exogenous photocatalysts. It is triggered by the direct excitation of DHPs, which act as a radical source and as a reductant, facilitating the turnover of the chiral catalytic nickel complex.  相似文献   

18.
In this work, a strategy for chemical synthesis of ascorbic acid functionalized polyacrylates (PAAA) was accomplished in a two‐step process, first a reversible addition fragmentation chain‐transfer (RAFT) polymerization on a benzyl‐protected ascorbyl acrylate monomer, followed by a deprotection (debenzylation) reaction. The polymers were characterized by 1H NMR, 13C NMR and gel permeation chromatograph. The polymerization ability of redox pair including PAAA and H2O2 were conducted through the measurement of 2‐hydroxyethyl acrylate (HEA) conversion against time via real‐time FT‐NIR. It was found that PAAA in the presence of H2O2, independent on itself chain length, exhibited much faster polymerization than small molecule ascorbic acid (smAA) as reductant at identical condition. Interestingly, when the concentration of ascorbate repeating unit was over some critical value, the polymerization kinetics of HEA could be tunable by simply adjusting the initial molar ratio of reductant to oxidant and environmental pH. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

19.
The first cobalt‐catalyzed hydrogenative N‐methylation and alkylation of amines with readily available carboxylic acid feedstocks as alkylating agents and H2 as ideal reductant is described. Combination of tailor‐made triphos ligands with cobalt(II) tetrafluoroborate significantly improved the efficiency, thus promoting the reaction under milder conditions. This novel protocol allows for a broad substrate scope with good functional group tolerance, even in the presence of reducible alkenes, esters, and amides.  相似文献   

20.
Reductive cross‐electrophile coupling reactions have recently been developed to a versatile and sustainable synthetic tool for selective C?C bond formation. The employment of cheap and abundant electrophiles avoids the pre‐formation and handling of organometallic reagents. In situ reductive coupling is effected in the presence of a transition‐metal catalyst (Ni, Co, Pd, Fe) and a suitable metallic reductant (Mn, Zn, Mg). This Concept article assesses the current state of the art and summarizes recent protocols with various combinations of alkyl, alkenyl, allyl, and aryl reagents and highlights key mechanistic studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号