首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Great strides have been made in enhancing solar energy conversion by utilizing plasmonic nanostructures in semiconductors. However, current generation with plasmonic nanostructures is still somewhat inefficient owing to the ultrafast decay of plasmon‐induced hot electrons. It is now shown that the ultrafast decay of hot electrons across Au nanoparticles can be significantly reduced by strong coupling with CdS quantum dots and by a Schottky junction with perovskite SrTiO3 nanoparticles. The designed plasmonic nanostructure with three distinct components enables a hot‐electron‐assisted energy cascade for electron transfer, CdS→Au→SrTiO3, as demonstrated by steady‐state and time‐resolved photoluminescence spectroscopy. Consequently, hot‐electron transfer enabled the efficient production of H2 from water as well as significant electron harvesting under irradiation with visible light of various wavelengths. These findings provide a new approach for overcoming the low efficiency that is typically associated with plasmonic nanostructures.  相似文献   

2.
Controlling the interaction of polarization light with an asymmetric nanostructure such as a metal/semiconductor heterostructure provides opportunities for tuning surface plasmon excitation and near‐field spatial distribution. However, light polarization effects on interfacial charge transport and the photocatalysis of plasmonic metal/semiconductor photocatalysts are unclear. Herein, we reveal the polarization dependence of plasmonic charge separation and spatial distribution in Au/TiO2 nanoparticles under 45° incident light illumination at the single‐particle level using a combination of photon‐irradiated Kelvin probe force microscopy (KPFM) and electromagnetic field simulation. We quantitatively uncover the relationship between the local charge density and polarization angle by investigating the polarization‐dependent surface photovoltage (SPV). The plasmon‐induced photocatalytic activity is enhanced when the polarization direction is perpendicular to the Au/TiO2 interface.  相似文献   

3.
Ag nanoplates, as two‐dimensional plasmonic nanostructures, have attracted intensive attention due to their strong shape‐dependent optical properties and related applications. Here parallel face‐exposed Ag nanoplates vertically grown on micro‐hemisphere surfaces have been achieved by firstly electrodepositing the micro‐hemispheres assembled by Ag nanoplates, whose planar surfaces are stuck together, on indium tin oxide substrates, and then Ostwald ripening the as‐electrodeposited micro‐hemispheres in water. The sizes of the nanoplates and the gaps between the neighboring nanoplates have been tailored by tuning the Ostwald‐ripening duration, so that the SERS activity of the micro‐hemispheres has been remarkably improved. The improved SERS activity can be well explained by our systematic finite‐element simulation. Therefore, Ostwald ripening offers a route to the synthesis of Ag nanoplates, and the optimization of plasmon coupling and SERS activity of nanostructure‐assembled systems.  相似文献   

4.
We design well‐defined metal‐semiconductor nanostructures using thiol‐functionalized CdTe quantum dots (QDs)/quantum rods (QRs) with bovine serum albumin (BSA) protein‐conjugated Au nanoparticles (NPs)/nanorods (NRs) in aqueous solution. The main focus of this article is to address the impacts of size and shape on the photophysical properties, including radiative and nonradiative decay processes and energy transfers, of Au‐CdTe hybrid nanostructures. The red shifting of the plasmonic band and the strong photoluminescence (PL) quenching reveal a strong interaction between plasmons and excitons in these Au‐CdTe hybrid nanostructures. The PL quenching of CdTe QDs varies from 40 to 86 % by changing the size and shape of the Au NPs. The radiative as well as the nonradiative decay rates of the CdTe QDs/QRs are found to be affected in the presence of both Au NPs and NRs. A significant change in the nonradiative decay rate from 4.72×106 to 3.92×1010 s?1 is obtained for Au NR‐conjugated CdTe QDs. It is seen that the sizes and shapes of the Au NPs have a pronounced effect on the distance‐dependent energy transfer. Such metal‐semiconductor hybrid nanostructures should have great potentials for nonlinear optical properties, photovoltaic devices, and chemical sensors.  相似文献   

5.
A facile in situ method to grow Au nanoparticles (NPs) in hexaniobate nanoscrolls is applied to the formation of plasmonic Au@hexaniobate and bifunctional plasmonic‐magnetic Au‐Fe3O4@hexaniobate nanopeapods (NPPs). Utilizing a solvothermal treatment, rigid multiwalled hexaniobate nanoscrolls and partially filled Fe3O4@hexaniobate NPPs were first fabricated. These nanostructures were then used as templates for the controlled in situ growth of Au NPs. The resulting peapod structures exhibited high filling fractions and long‐range uniformity. Optical measurements showed a progressive red shift in plasmonic behavior between Au NPs, Au NPPs, and Au‐Fe3O4 NPPs; magnetic studies found that the addition of gold in the Fe3O4@hexaniobate NPPs reduced interparticle coupling effects. The development of this approach allows for the routine bulk preparation of noble‐metal‐containing bifunctional nanopeapod materials.  相似文献   

6.
The localized surface plasmon resonance (LSPR) of plasmonic nanomaterials is highly dependent on their structures. Going beyond simple shape and size, further structural diversification demands the growth of non‐wetting domains. Now, two new dimensions of synthetic controls in Au‐on‐Au homometallic nanohybrids are presented: the number of the Au islands and the emerging shapes. By controlling the interfacial energy and growth kinetics, a series of Au‐on‐AuNR hybrid structures are successfully obtained, with the newly grown Au domains being sphere and branched wire (nanocoral). The structural variety allowed the LSPR to be fine‐tuned in full spectrum range, making them excellent candidates for plasmonic applications. The nanocorals exhibit black‐body absorption and outstanding photothermal conversion capability in NIR‐II window. In vitro and in vivo experiments verified them as excellent photothermal therapy and photoacoustic imaging agents.  相似文献   

7.
DNA is typically impermeable to the plasma membrane due to its polyanionic nature. Interestingly, several different DNA nanostructures can be readily taken up by cells in the absence of transfection agents, which suggests new opportunities for constructing intelligent cargo delivery systems from these biocompatible, nonviral DNA nanocarriers. However, the underlying mechanism of entry of the DNA nanostructures into the cells remains unknown. Herein, we investigated the endocytotic internalization and subsequent transport of tetrahedral DNA nanostructures (TDNs) by mammalian cells through single‐particle tracking. We found that the TDNs were rapidly internalized by a caveolin‐dependent pathway. After endocytosis, the TDNs were transported to the lysosomes in a highly ordered, microtubule‐dependent manner. Although the TDNs retained their structural integrity within cells over long time periods, their localization in the lysosomes precludes their use as effective delivery agents. To modulate the cellular fate of the TDNs, we functionalized them with nuclear localization signals that directed their escape from the lysosomes and entry into the cellular nuclei. This study improves our understanding of the entry into cells and transport pathways of DNA nanostructures, and the results can be used as a basis for designing DNA‐nanostructure‐based drug delivery nanocarriers for targeted therapy.  相似文献   

8.
Reproducible and controllable growth of nanostructures with well‐defined physical and chemical properties is a longstanding problem in nanoscience. A key step to address this issue is to understand their underlying growth mechanism, which is often entangled in the complexity of growth environments and obscured by rapid reaction speeds. Herein, we demonstrate that the evolution of size, surface morphology, and the optical properties of gold plasmonic nanostructures could be quantitatively intercepted by dynamic and stoichiometric control of the DNA‐mediated growth. By combining synchrotron‐based small‐angle X‐ray scattering (SAXS) with transmission electron microscopy (TEM), we reliably obtained quantitative structural parameters for these fine nanostructures that correlate well with their optical properties as identified by UV/Vis absorption and dark‐field scattering spectroscopy. Through this comprehensive study, we report a growth mechanism for gold plasmonic nanostructures, and the first semiquantitative revelation of the remarkable interplay between their morphology and unique plasmonic properties.  相似文献   

9.
We demonstrate the single‐molecule imaging of the catalytic reaction of a Zn2+‐dependent DNAzyme in a DNA origami nanostructure. The single‐molecule catalytic activity of the DNAzyme was examined in the designed nanostructure, a DNA frame. The DNAzyme and a substrate strand attached to two supported dsDNA molecules were assembled in the DNA frame in two different configurations. The reaction was monitored by observing the configurational changes of the incorporated DNA strands in the DNA frame. This configurational changes were clearly observed in accordance with the progress of the reaction. The separation processes of the dsDNA molecules, as induced by the cleavage by the DNAzyme, were directly visualized by high‐speed atomic force microscopy (AFM). This nanostructure‐based AFM imaging technique is suitable for the monitoring of various chemical and biochemical catalytic reactions at the single‐molecule level.  相似文献   

10.
DNA origami has rapidly emerged as a powerful and programmable method to construct functional nanostructures. However, the size limitation of approximately 100 nm in classic DNA origami hampers its plasmonic applications. Herein, we report a jigsaw‐puzzle‐like assembly strategy mediated by gold nanoparticles (AuNPs) to break the size limitation of DNA origami. We demonstrated that oligonucleotide‐functionalized AuNPs function as universal joint units for the one‐pot assembly of parent DNA origami of triangular shape to form sub‐microscale super‐origami nanostructures. AuNPs anchored at predefined positions of the super‐origami exhibited strong interparticle plasmonic coupling. This AuNP‐mediated strategy offers new opportunities to drive macroscopic self‐assembly and to fabricate well‐defined nanophotonic materials and devices.  相似文献   

11.
We review recent developments in our group regarding the solution-phase synthesis of one-dimensional nanostructures of metals. The synthetic approaches include solution-liquid-solid growth for nanowires of low-melting-point metals such as Pb; seed-directed growth for Ag nanowires, nanobeams, and nanobelts; kinetically controlled growth for Pt nanorods, nanowires, and multipods; and galvanic replacement for nanotubes of Au, Pt, and Pd. Both characterization and mechanistic studies are presented for each nanostructure. Finally, we highlight the electrical and plasmonic properties of these metal nanostructures and discuss their potential applications in nanoscale devices.  相似文献   

12.
The synthesis of noble metal/semiconductor hybrid nanostructures for enhanced catalytic or superior optical properties has attracted a lot of attention in recent years. In this study, a facile and all‐solution‐processed synthetic route was employed to demonstrate an Au/ZnO platform with plasmonic‐enhanced UV/Vis catalytic properties while retaining strengthened luminescent properties. The visible‐light response of photocatalysis is supported by localized surface plasmon resonance (LSPR) excitations while the enhanced performance under UV is aided by charge separation and strong absorption. The enhancement in optical properties is mainly due to local field enhancement effect and coupling between exciton and LSPR. Luminescent characteristics are investigated and discussed in detail. Recyclability tests showed that the Au/ZnO substrate is reusable by cleaning and has a long shelf life. Our result suggests that plasmonic enhancement of photocatalytic performance is not necessarily a trade‐off for enhanced near‐band‐edge emission in Au/ZnO. This approach may give rise to a new class of versatile platforms for use in novel multifunctional and integrated devices.  相似文献   

13.
Nanorattles, comprised of a nanosphere inside a nanoshell, were employed as the next generation of plasmonic catalysts for oxidations promoted by activated O2. After investigating how the presence of a nanosphere inside a nanoshell affected the electric‐field enhancements in the nanorattle relative to a nanoshell and a nanosphere, the SPR‐mediated oxidation of p‐aminothiophenol (PATP) functionalized at their surface was investigated to benchmark how these different electric‐field intensities affected the performances of Au@AgAu nanorattles, AgAu nanoshells and Au nanoparticles having similar sizes. The high performance of the nanorattles enabled the visible‐light driven synthesis of azobenzene from aniline under ambient conditions. As the nanorattles allow the formation of electromagnetic hot spots without relying on the uncontrolled aggregation of nanostructures, it enables their application as catalysts in liquid phase under mild conditions using visible light as the main energy input.  相似文献   

14.
We report a first‐principles investigation of Li adsorption and diffusion in single‐walled Si nanotubes (SWSiNTs) of interest to Li‐ion battery anodes. We calculate Li insertion characteristics in SWSiNTs and compare them with the respective ones in carbon nanotubes (CNTs) and other silicon nanostructures. From our calculations, SWSiNTs show higher reactivity toward the adsorption of Li adatoms than CNTs and Si nanoclusters. Considering the importance of Li kinetics, we demonstrate that the interior of SWSiNTs may serve as a fast Li diffusion channel. The important advantage of SWSiNTs over their carbon analogues is a sevenfold reduction in the energy barrier for the penetration of the Li atoms into the nanotube interior through the sidewalls. This prepossesses easier Li diffusion inside the tube and subsequent utilization of the interior sites, which enhances Li storage capacity of the system. The improvements in both Li uptake and Li mobility over their analogues support the great potential of SWSiNTs as Li‐ion battery anodes.  相似文献   

15.
Ultrathin two‐dimensional (2D) nanostructures have attracted increasing research interest for energy storage and conversion. However, tackling the key problem of lattice mismatch inducing the instability of ulreathin nanostructures during phase transformations is still a critical challenge. Herein, we describe a facile and scalable strategy for the growth of ultrathin nickel phosphide (Ni2P) nanosheets (NSs) with exposed (001) facets. We show that single‐layer functionalized graphene with residual oxygen‐containing groups and a large lateral size contributes to reducing the lattice strain during phosphorization. The resulting nanostructure exhibits remarkable hydrogen evolution activity and good stability under alkaline conditions.  相似文献   

16.
Self‐assembled plasmonic logic gates that read DNA molecules as input and return plasmonic chiroptical signals as outputs are reported. Such logic gates are achieved on a DNA‐based platform that logically regulate the conformation of a chiral plasmonic nanostructure, upon specific input DNA strands and internal computing units. With systematical designs, a complete set of Boolean logical gates are realized. Intriguingly, the logic gates could be endowed with adaptiveness, so they can autonomously alter their logics when the environment changes. As a demonstration, a logic gate that performs AND function at body temperature while OR function at cold storage temperature is constructed. In addition, the plasmonic chiroptical output has three distinctive states, which makes a three‐state molecular logic gate readily achievable on this platform. Such DNA‐based plasmonic logic gates are envisioned to execute more complex tasks giving these unique characteristics.  相似文献   

17.
The synergistic effect between metal and TiO2 nanoparticles brings about new, enhanced functionalities for a myriad of applications, ranging from labeling and sensing to catalysis and surface‐enhanced Raman scattering. Although extensive work has been done in the preparation of concentric TiO2‐coated metal nanostructures, current methods for the synthesis of noncentrosymmetric morphologies are still very limited. This Focus review summarizes the various methods used to prepare TiO2‐coated metal nanostructures, with a particular emphasis on noncentrosymmetric morphologies, their novel plasmonic properties, and their promising applications in the fields of catalysis and photocatalysis.  相似文献   

18.
Hierarchical nitrogen‐doped ZnO flowerlike nanostructures were synthesized on a large scale. These nanostructures were characterized by FESEM, HRTEM, XRD, FTIR, XPS, and TGA, and their suitability for multifunctional environmental applications was investigated. The experimental results demonstrated that the hierarchical N‐doped ZnO flowerlike nanostructure enhances the photodegradation of methyl blue (MB) and acid orange 7 (AO7) by presenting a large specific surface area and high light utilization rate, inhibits the growth of bacteria without light irradiation, and increases the permeate flux when used in a membrane filtration system. These advantages of the hierarchical N‐doped ZnO flowerlike nanostructure brings benefits to the environmental application fields.  相似文献   

19.
Plasmonic materials have drawn emerging interest, especially in nontraditional semiconductor nanostructures with earth‐abundant elements and low resistive loss. However, the actualization of highly efficient catalysis in plasmonic semiconductor nanostructures is still a challenge, owing to the presence of surface‐capping agents in their synthetic procedures. To fulfill this, a facile non‐aqueous procedure was employed to prepare well‐defined molybdenum oxide nanosheets in the absence of surfactants. The obtained MoO3‐x nanosheets display intense absorption in a wide range attributed to the localized surface plasmon resonances, which can be tuned from the visible to the near‐infrared region. Herein, we demonstrate that such plasmonic semiconductor nanostructures could be used as highly efficient catalysts that dramatically enhance the hydrogen‐generation activity of ammonia borane under visible light irradiation.  相似文献   

20.
Nanoparticles show great potential for drug delivery. However, suitable nanostructures capable of loading a range of drugs together with the co‐delivery of siRNAs, which avoid the problem of cation‐associated cytotoxicity, are lacking. Herein, we report an small interfering RNA (siRNA)‐based vesicle (siRNAsome), which consists of a hydrophilic siRNA shell, a thermal‐ and intracellular‐reduction‐sensitive hydrophobic median layer, and an empty aqueous interior that meets this need. The siRNAsome can serve as a versatile nanostructure to load drug agents with divergent chemical properties, therapeutic proteins as well as co‐delivering immobilized siRNAs without transfection agents. Importantly, the inherent thermal/reduction‐responsiveness enables controlled drug loading and release. When siRNAsomes are loaded with the hydrophilic drug doxorubicin hydrochloride and anti‐P‐glycoprotein siRNA, synergistic therapeutic activity is achieved in multidrug resistant cancer cells and a tumor model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号