首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
A more convenient synthesis of the perfluoro alkyl hypofluorite (F3C)3COF as well as the hitherto unknown (C2F5)(F3C)2COF compound is reported. Both hypofluorites can be prepared by use of the corresponding tertiary alcohols RFOH and elemental fluorine in the presence of CsF. An appropriate access to these highly reactive hypofluorites is crucial. The hypofluorites are then transferred into their corresponding perfluoro bisalkyl peroxides RFOORF [RF=(F3C)3C, (C2F5)(F3C)2C] by treatment with partially fluorinated silver wool. NMR, gas-phase infrared, and solid-state Raman spectra of the perfluoro bisalkyl peroxides are presented and their chemical properties are discussed.  相似文献   

2.
The structures of two salts of flunarizine, namely 1‐bis[(4‐fluorophenyl)methyl]‐4‐[(2E)‐3‐phenylprop‐2‐en‐1‐yl]piperazine, C26H26F2N2, are reported. In flunarizinium nicotinate {systematic name: 4‐bis[(4‐fluorophenyl)methyl]‐1‐[(2E)‐3‐phenylprop‐2‐en‐1‐yl]piperazin‐1‐ium pyridine‐3‐carboxylate}, C26H27F2N2+·C6H4NO2, (I), the two ionic components are linked by a short charge‐assisted N—H...O hydrogen bond. The ion pairs are linked into a three‐dimensional framework structure by three independent C—H...O hydrogen bonds, augmented by C—H...π(arene) hydrogen bonds and an aromatic π–π stacking interaction. In flunarizinediium bis(4‐toluenesulfonate) dihydrate {systematic name: 1‐[bis(4‐fluorophenyl)methyl]‐4‐[(2E)‐3‐phenylprop‐2‐en‐1‐yl]piperazine‐1,4‐diium bis(4‐methylbenzenesulfonate) dihydrate}, C26H28F2N22+·2C7H7O3S·2H2O, (II), one of the anions is disordered over two sites with occupancies of 0.832 (6) and 0.168 (6). The five independent components are linked into ribbons by two independent N—H...O hydrogen bonds and four independent O—H...O hydrogen bonds, and these ribbons are linked to form a three‐dimensional framework by two independent C—H...O hydrogen bonds, but C—H...π(arene) hydrogen bonds and aromatic π–π stacking interactions are absent from the structure of (II). Comparisons are made with some related structures.  相似文献   

3.
The reaction of fac‐[Re(bipy)(CO)3(PMe3)][OTf] (bipy=2,2′‐bipyridine) with KN(SiMe3)2 affords two neutral products: cis,trans‐[Re(bipy)(CO)2(CN)(PMe3)], and a thermally unstable compound, which features a new C?C bond between a P‐bonded methylene group (from methyl group deprotonation) and the C6 position of bipy. The solid‐state structures of more stable 1,2‐bis[(2,6‐diisopropylphenyl)imino]acenaphthene analogs, resulting from the deprotonation of PMe3, PPhMe2, and PPh2Me ligands, are determined by X‐ray diffraction.  相似文献   

4.
Aliphatic perfluorinated carboxylic esters have been prepared by two methods; (i) the reaction of the potassium salt of perfluoro 3-ethyl pent-3-ol, KOC(C2F5)3, with perfluoro acid chlorides RfCOCl, to yield perfluorinated esters of composition RfCOOC(C2F5)3, and (ii) the reaction of carbonyl chloride or thionyl chloride with a mixture of the potassium salt KOC(C2F5)3 and perfluoro acid salts of the general formula KOCORf in a polar solvent. The product ester has the composition RfCOOC(C2F5)3, and in this instance carbon dioxide or sulphur dioxide is liberated during the reaction. A qualitative study of the thermal decomposition of a perfluoro ester has been made.A tertiary perfluoro carbonate of composition [(C2F5)2CF3CO]2CO has been prepared by the reaction of phosgene with the potassium salt KOC(C2F5)2CF3 in a polar solvent. The intermediate acid chloride (C2F5)2CF3COCOCl can be isolated.  相似文献   

5.
The reaction of the bis‐chlorophosphines 1 a – 1 d with bis(2‐chloroethyl)amine hydrochloride in the presence of triethylamine and with various trimethylsilylamines led to a new class of bis‐phosphorus ligands 2 a – 2 c and 3 a – 3 g . 31P‐NMR studies suggested that the bis‐phosphorus ligands undergo rotation reactions about the alkyl bridge in polar solvents. Compounds 2 a – 2 c showed initially only one sharp singlet each in their 31P‐NMR spectra. After a few days at room temperature, two signals were observed. Similar results were observed for 3 a – 3 g . In the solid state, the two phosphorus atoms in 2 c are not equivalent, as was confirmed by the observation of two signals in the solid state 31P‐NMR spectrum. Oxidation reactions of 2 a – 2 c by the hydrogen peroxide‐urea 1 : 1 adduct (NH2)2C(:O) · H2O2 led to the formation of the corresponding phosphoryl compounds 4 a – 4 c . Reaction of 2 a and 3 a with Pt[COD]Cl2 (COD = 1.5‐Cyclooctadiene) furnished the complexes 5 and 6 . The NMR spectra suggested that the two chlorine atoms are in cis position. X‐ray structure analyses were conducted for 2 a , which exhibits twofold symmetry; 2 c , which is linked into dimers by hydrogen bonds C–H…O; and 6 , confirming the cis configuration.  相似文献   

6.
Ferrocenes, which are typically air‐stable outer‐sphere single‐electron transfer reagents, were found to react with dioxygen in the presence of B(C6F5)3, a Lewis acid unreactive to O2, to generate bis(borane) peroxide. Although several Group 13 peroxides have been reported, boron‐supported peroxides are rare, with no structurally characterized examples of the BO2B moiety. The synthesis of a bis(borane)‐supported peroxide anion and its structural and electrochemical characterization are described.  相似文献   

7.
The zwitterionic λ5Si‐silicates [(dimethylammonio)methyl]bis[methanecarboxylatothiolato(2–)‐O,S]silicate ( 9 ) and bis[benzene‐1‐carboxylato‐2‐thiolato(2–)‐O,S][(dimethylammonio)methyl]silicate ( 10 ) were synthesized by treatment of the zwitterionic λ5Si‐tetrafluorosilicate F4SiCH2NMe2H with two molar equivalents of Me3SiSCH2C(O)OSiMe3 and 1,2‐Me3SiS–C6H4–C(O)OSiMe3, respectively (formation of four molar equivalents of Me3SiF). Compounds 9 and 10 were characterized by elemental analyses (C, H, N, S) and solid‐state NMR studies (13C, 29Si). In addition, compound 10 was structurally characterized by single‐crystal X‐ray diffraction.  相似文献   

8.
Photochemical or thermal decomposition of azo‐compounds (such as 2,2‐azobisisobutyronitrile, 2,2‐azobis(2‐methylpropionamidine) dihydrochloride, dialkyl peroxides (such as tert‐butyl peroxide and diacyl peroxides (such as benzoyl peroxide) in anaerobic nitric oxide (NO)‐saturated dimethylsulfoxide (DMSO) or aqueous solutions yielded nitroxides. Well‐characterized electron paramagnetic resonance spectra of nitroxides revealed that NO was favorable for reacting with carbon‐centered and less stereo‐inhibited transient alkyl radicals, giving kinds of nitrosoalkane, typically nitrosomethane, which act sequentially as C‐nitroso compounds to trap transient radicals present in solution, yielding spin‐trapping adducts, i.e. nitroxides. Radicals, including sulfinyl radicals from UV‐irradiated DMSO, were trapped by the in situ formed CH3NO. O‐centered radicals could not add to the freshly formed C‐nitroso compounds. Possible mechanisms are suggested. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

9.
The new tris(perfluoroalkyl)borane carbonyls, (C2F5)3BCO and (C3F7)3BCO, were prepared by means of a novel synthetic route using commercially available precursors by reacting K[(C2F5)3BCOOH] and K[(C3F7)3BCOOH] with concentrated sulfuric acid in the last step. The carboxylic acids, K[(C2F5)3BCOOH] and K[(C3F7)3BCOOH], were prepared by oxidative cleavage of the C?C triple bonds in Cs[(C2F5)3BC?CPh] and Cs[(C3F7)3BC?CPh] in a two‐step process to yield K[(C2F5)3BCO? COPh] and K[(C3F7)3BCO? COPh] as isolable intermediates. Crystal structures were obtained of K[(C2F5)3BCO? COPh], K[(C2F5)3BCOOH] ? H2O, (C2F5)3BCO, K[(C3F7)3BCOOH] ? 2 H2O, and (C3F7)3BCO. In the crystal structures of (C2F5)3BCO and (C3F7)3BCO the C?O bond lengths are 1.109(2) and 1.103(5) Å, respectively, which are among the shortest observed to date. Tris(pentafluoroethyl)borane carbonyl and (C3F7)3BCO slowly decompose at room temperature to yield CO, difluoroperfluoroalkylboranes and perfluoroalkenes. The decomposition of (C2F5)3BCO was found to follow a first‐order rate law with Ea=107 kJ mol?1.  相似文献   

10.
Gas‐phase structures of several organic and inorganic peroxides X‐O‐O‐X and X‐O‐O‐X′, which have been determined experimentally by gas electron diffraction and/or microwave spectroscopy, are discussed. The O?O bond length in these peroxides varies from 1.481(8) Å in Me3SiOOSiMe3 to 1.214(2) Å in FOOF and the dihedral angle ?(XO‐OX) between 0° in HC(O)O‐OH and near 180° in ButO‐OBut. Some of the peroxides cause problems for quantum chemistry, since several computational methods fail to reproduce the experimental structures. Extreme examples are MeO‐OMe and FO‐OF. In the case of MeO‐OMe only about half of the more than 100 computational methods reported in the literature reproduce the experimentally determined double‐minimum shape of the torsional potential around the O?O bond correctly. For FO‐OF only a small number of close to 200 computational methods reproduce the O?O and O?F bond lengths better than ±0.02 Å.  相似文献   

11.
Hydrocarbon‐bridged Metal Complexes. XLIX. Coordination Chemistry of Bis(ferrocenyl) substituted 1,3 Diketonates with Ruthenium, Rhodium, Iridium, and Palladium The reactions of the enolates of diferrocenoylmethane and of spacer bridged bis‐, tris‐ and tetrakis(ferrocenoyl)‐1,3‐diketones with chlorobridged compounds [(R3P)PdCl2]2, [(η3‐C3H5)PdCl]2, [(p‐cymene)RuCl2]2, [Cp*MCl2]2 (M = Rh, Ir) give a series of mono‐, bis‐, tris‐ and tetrakis(chelate) complexes 2 – 18 . The structures of (Ph3P)(Cl)Pd[OC(Fe)CHC(Fc)O] ( 3 ) and (Tol3P)(Cl) · Pd[OC(Fc)CHC(O)–C(O)CHC(Fc)O]Pd(Cl)(PTol3) ( 11 ) were determined by X‐ray diffraction. The methine H atom of diferrocenoylmethane and of 3 was substituted by bromine using N‐bromosuccinimide. The electrophilic glycine equivalent α‐bromo‐N‐boc‐glycine ester was added to the methine C‐atom (C3) of diferrocenoylmethane and the product was used as O,O′ chelate ligand.  相似文献   

12.
Seven discrete sugar‐pendant diamines were complexed to the {M(CO)3}+ (99mTc/Re) core: 1,3‐diamino‐2‐propyl β‐D ‐glucopyranoside ( L 1 ), 1,3‐diamino‐2‐propyl β‐D ‐xylopyranoside ( L 2 ), 1,3‐diamino‐2‐propyl α‐D ‐mannopyranoside ( L 3 ), 1,3‐diamino‐2‐propyl α‐D ‐galactopyranoside ( L 4 ), 1,3‐diamino‐2‐propyl β‐D ‐galactopyranoside ( L 5 ), 1,3‐diamino‐2‐propyl β‐(α‐D ‐glucopyranosyl‐(1,4)‐D ‐glucopyranoside) ( L 6 ), and bis(aminomethyl)bis[(β‐D ‐glucopyranosyloxy)methyl]methane ( L 7 ). The Re complexes [Re( L 1 – L 7 )(Br)(CO)3] were characterized by 1H and 13C 1D/2D NMR spectroscopy which confirmed the pendant nature of the carbohydrate moieties in solution. Additional characterization was provided by IR spectroscopy, elemental analysis, and mass spectrometry. Two analogues, [Re( L 2 )(CO)3Br] and [Re( L 3 )(CO)3Br], were characterized in the solid state by X‐ray crystallography and represent the first reported structures of Re organometallic carbohydrate compounds. Conductivity measurements in H2O established that the complexes exist as [Re( L 1 – L 7 )(H2O)(CO)3]Br in aqueous conditions. Radiolabelling of L 1 – L 7 with [99mTc(H2O)3(CO)3]+ afforded in high yield compounds of identical character to the Re analogues. The radiolabelled compounds were determined to exhibit high in vitro stability towards ligand exchange in the presence of an excess of either cysteine or histidine over a 24 h period.  相似文献   

13.
1,8‐Bis[(diethylamino)phosphino]naphthalene ( 1 ) reacted with dry methanol in dichloromethane to form the new bis‐phosphonite ligand 1,8‐bis[(dimethoxy)phosphino]naphthalene (dmeopn, 2 ). By oxidation of 2 with H2O2 · (H2N)2C(:O) the corresponding bis‐phosphonate, 1,8‐bis[(dimethoxy)phosphoryl]naphthalene ( 3 ), was obtained quantitatively. Reaction of 3 with phosphorus trichloride unexpectedly furnished a 2.4 : 1 mixture of the bis‐phosphonate anhydrides rac‐ and meso‐1,3‐dimethoxy‐1,3‐dioxo‐2,3‐dihydro‐1,3‐diphospha‐2‐oxaphenalene (rac‐ 4 and meso‐ 4 ) from which rac‐ 4 could be fractionally crystallised. The bis‐phosphonite 2 behaved as a normal bidentate chelate ligand towards Mo0 and PdII, and furnished the complexes [(dmeopn)Mo(CO)4] ( 5 ) and [(dmeopn)PdCl2] ( 6 ) when treated with [(nor)Mo(CO)4] or [(cod)PdCl2] (nor = norbornadiene, cod = cycloocta‐1,8‐diene). Attempts to prepare 1,8‐diphosphinonaphthalene ( 7 ) by reducing 2 or 3 with LiAlH4 or LiAlH4/TMSCl (1 : 1) (TMSCl = trimethyl chlorosilane) in THF led to inseparable mixtures of phosphorus‐containing products. Compounds 2 – 6 were characterised by 1H‐, 13C‐, and 31P‐NMR spectroscopy, IR spectroscopy, mass spectrometry and elemental analysis. X‐ray crystal structure analyses were carried out for the bis‐phosphonate anhydride rac‐ 4 and the palladium(II) complex 6 . The geometry of compound rac‐ 4 , in which the phosphorus atoms are connected by an oxygen atom, reveals a relief of strain from the bis‐phosphine 1 , whereas the 1,8‐P,P′‐naphthalenediyl group in 6 is surprisingly distorted; the P atoms are displaced from the naphthalene best plane by –46.7 and 54.5 pm.  相似文献   

14.
15.
The new ruthenium complex [Ru(N3P)(OAc)][BPh4] ( 4 ), in which N3P is the N,P mixed tetradentate ligand N,N‐bis[(pyridin‐2‐yl)methyl]‐[2‐(diphenylphosphino)phenyl]methanamine was synthesized. The complex was found to be catalytically active for the endo cycloisomerization of alkynols. The catalytic reactions can be used to synthesize five‐, six‐, and seven‐membered endo‐cyclic enol ethers in good to excellent yields. A catalytic cycle involving a vinylidene intermediate was proposed for the catalytic reactions. Treatment of complex 4 with PhC?CH and H2O gave the alkyl complex [Ru(CH2Ph)(CO)(N3P)][BPh4] ( 30 ), which supports the assumption that the catalytic reactions involve addition of a hydroxyl group to the C?C bond of vinylidene ligands.  相似文献   

16.
The first zwitterionic borata‐bis(NHC)‐stabilized phosphaketenyl germyliumylidene [(L2(O=C=P)Ge:] 2 (L2=(p ‐tolyl)2B[1‐(1‐adamantyl)‐3‐yl‐2‐ylidene]2) has been synthesized by salt‐metathesis reaction of [L2(Cl)Ge:] 1 with sodium phosphaethynolate [(dioxane)n NaOCP]. Unexpectedly, its exposure to UV light affords, after reductive elimination of the entire PCO group, the unprecedented [L2Ge‐GeL2] complex 3 in 54 % yields bearing the Ge22+ ion with Ge in the oxidation state +1. In addition, the 1,3‐digermylium‐2,4‐diphosphacyclobutadiene [L2Ge(μ‐P)2GeL2] 4 and bis(germyliumylidenyl)‐substituted diphosphene [(L2Ge‐P=P‐GeL2)] 5 could also be obtained in moderate yields. The formation of 3 – 5 and their electronic structures have been elucidated with DFT calculations.  相似文献   

17.
Two C2‐symmetric meso‐alkynylporphyrins, namely 5,15‐bis[(4‐butyl‐2,3,5,6‐tetrafluorophenyl)ethynyl]‐10,20‐dipropylporphyrin, C50H42F8N4, (I), and 5,15‐bis[(4‐butylphenyl)ethynyl]‐10,20‐dipropylporphyrin, C50H50N4, (II), show remarkable π–π stacking that forms columns of porphyrin centers. The tetrafluorophenylene moieties in (I) show intermolecular interactions with each other through the F atoms, forming one‐dimensional ribbons. No significant π–π interactions are observed in the plane of the phenylene and tetrafluorophenylene moieties in either (I) or (II). The molecules of both compounds lie about inversion centers.  相似文献   

18.
Combining an electrophilic iron complex [Fe(Fpda)(THF)]2 ( 3 ) [Fpda=N,N′‐bis(pentafluorophenyl)‐o‐phenylenediamide] with the pre‐activation of α‐alkyl‐substituted α‐diazoesters reagents by LiAl(ORF)4 [ORF=(OC(CF3)3] provides unprecedented access to selective iron‐catalyzed intramolecular functionalization of strong alkyl C(sp3)?H bonds. Reactions occur at 25 °C via α‐alkyl‐metallocarbene intermediates, and with activity/selectivity levels similar to those of rhodium carboxylate catalysts. Mechanistic investigations reveal a crucial role of the lithium cation in the rate‐determining formation of the electrophilic iron‐carbene intermediate, which then proceeds by concerted insertion into the C?H bond.  相似文献   

19.
The reaction of CuI, AgI, and AuI salts with carbon monoxide in the presence of weakly coordinating anions led to known and structurally unknown non‐classical coinage metal carbonyl complexes [M(CO)n][A] (A=fluorinated alkoxy aluminates). The coinage metal carbonyl complexes [Cu(CO)n(CH2Cl2)m]+[A]? (n=1, 3; m=4?n), [Au2(CO)2Cl]+[A]?, [(OC)nM(A)] (M=Cu: n=2; Ag: n=1, 2) as well as [(OC)3Cu???ClAl(ORF)3] and [(OC)Au???ClAl(ORF)3] were analyzed with X‐ray diffraction and partially IR and Raman spectroscopy. In addition to these structures, crystallographic and spectroscopic evidence for the existence of the tetracarbonyl complex [Cu(CO)4]+[Al(ORF)4]? (RF=C(CF3)3) is presented; its formation was analyzed with the help of theoretical investigations and Born–Fajans–Haber cycles. We discuss the limits of structure determinations by routine X‐ray diffraction methods with respect to the C? O bond lengths and apply the experimental CO stretching frequencies for the prediction of bond lengths within the carbonyl ligand based on a correlation with calculated data. Moreover, we provide a simple explanation for the reported, partly confusing and scattered CO stretching frequencies of [CuI(CO)n] units.  相似文献   

20.
Synthesis and Molekular Structures of N‐substituted Diethylgallium‐2‐pyridylmethylamides (2‐Pyridylmethyl)(tert‐butyldimethylsilyl)amine ( 1a ) and (2‐pyridylmethyl)‐di(tert‐butyl)silylamine ( 1b ) form with triethylgallane the corresponding red adducts 2a and 2b via an additional nitrogen‐gallium bond. These oily compounds decompose during distillation. Heating under reflux in toluene leads to the elimination of ethane and the formation of the red oils of [(2‐pyridylmethyl)(tert‐butyldimethylsilyl)amido]diethylgallane ( 3a ) and [(2‐pyridylmethyl)‐di(tert‐butyl)silylamido]diethylgallane ( 3b ). In order to investigate the thermal stability solvent‐free 3a is heated up to 400 °C. The elimination of ethane is observed again and the C‐C coupling product N, N′‐Bis(diethylgallyl)‐1, 2‐dipyridyl‐1, 2‐bis(tert‐butyldimethylsilyl)amido]ethan ( 4 ) is found in the residue. Substitution of the silyl substituents by another 2‐pyridylmethyl group and the reaction of this bis(2‐pyridylmethyl)amine with GaEt3 yield triethylgallane‐diethylgallium‐bis(2‐pyridylmethyl)amide ( 5 ). The metalation product adds immediately another equivalent of triethylgallane regardless of the stoichiometry. The reaction of GaEt3 with 2‐pyridylmethanol gives quantitatively colorless 2‐pyridylmethanolato diethylgallane ( 6 ).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号