共查询到20条相似文献,搜索用时 31 毫秒
1.
The use of traditional CE to detect weak binding complexes is problematic due to the fast-off rate resulting in the dissociation of the complex during the separation process. Additionally, proteins involved in binding interactions often nonspecifically stick to the bare-silica capillary walls, which further complicates the binding analysis. Microchip CE allows flexibly positioning the detector along the separation channel and conveniently adjusting the separation length. A short separation length plus a high electric field enables rapid separations thus reducing both the dissociation of the complex and the amount of protein loss due to nonspecific adsorption during the separation process. Thrombin and a selective thrombin-binding aptamer were used to demonstrate the capability of microchip CE for the study of relatively weak binding systems that have inherent limitations when using the migration shift method or other CE methods. The rapid separation of the thrombin-aptamer complex from the free aptamer was achieved in less than 10 s on a single-cross glass microchip with a relatively short detection length (1.0 cm) and a high electric field (670 V/cm). The dissociation constant was determined to be 43 nM, consistent with reported results. In addition, aptamer probes were used for the quantitation of standard thrombin samples by constructing a calibration curve, which showed good linearity over two orders of magnitude with an LOD for thrombin of 5 nM at a three-fold S/N. 相似文献
2.
Villareal V Kaddis J Azad M Zurita C Silva I Hernandez L Rudolph M Moran J Gomez FA 《Analytical and bioanalytical chemistry》2003,376(6):822-831
Partial-filling affinity capillary electrophoresis (PFACE) is used to examine the binding interactions between two model biological systems: D-Ala-D-Ala terminus peptides to the glycopeptide antibiotic vancomycin (Van) from Streptomyces orientalis, and arylsulfonamides to carbonic anhydrase B (CAB, EC 4.2.1.1, bovine erythrocytes). Using these two systems, modifications in the PFACE technique are demonstrated including flow-through PFACE (FTPFACE), competitive flow-through PFACE (CFTPFACE), on-column ligand synthesis PFACE (OCLSPFACE), and multiple-step ligand injection PFACE (MSLIPFACE). In PFACE small plugs of sample are injected into the capillary column and an equilibrium is established between receptor and ligand during electrophoresis. Binding constants are then obtained by Scatchard analysis using changes in the migration time of the receptor/ligand on changing the concentration of the ligand/receptor. Data demonstrating the quantitative potential of these methods are presented. This review focuses on the unique capabilities of the different PFACE techniques as applied to two model biological systems. 相似文献
3.
An estimation method for determination of binding constants of receptors to ligands by affinity capillary electrophoresis
was evaluated. On the basis of the theories of pseudostationary phase or so-called dynamic stationary phase, the retention
factor (k) was used to represent the interaction between the receptor and ligand. k could be easily deduced from the migration times of the ligand and the receptor. Then, with the linear relationship of k versus the concentration of ligand in the running buffer, the binding constant K
b was calculated from the slope and intercept. In order to test its feasibility, the calculation method was demonstrated using
three model systems: the interactions between vancomycin and N-acetyl-d-Ala-d-Ala, ristocetin and N-acetyl-d-Ala-d-Ala, and carbonic anhydrase B and an arylsulfonamide. Estimated binding constants were compared with those determined by
other techniques. The results showed that this estimation method was reliable. This calculation method offers a simple and
easy approach to estimating binding constants of ligands to receptors. 相似文献
4.
This work utilizes on-column ligand synthesis and affinity capillary electrophoresis (ACE) to determine binding constants (Kb) of 9-flourenylmethyloxy carbonyl (Fmoc)-amino acid derivatives to the glycopeptide antibiotics ristocetin (Rist) and teicoplanin (Teic). In this technique, two separate plugs of sample are injected on to the capillary column and electrophoresed. The initial sample plug contains a d-Ala-d-Ala terminus peptide and either one or two non-interacting standard(s). The second plug contains a Fmoc-amino acid-N-hydroxysuccinimide (NHS) ester. The electrophoresis is then carried out with an increasing concentration of Rist or Teic in the running buffer. Upon electrophoresis the initial d-Ala-d-Ala peptide reacts with the Fmoc-amino acid yielding a new Fmoc-amino acid-d-Ala-d-Ala peptide derivative. Continued electrophoresis results in the binding of Rist or Teic to the Fmoc-amino acid-d-Ala-d-Ala peptide derivatives. Analysis of the change in the relative migration time ratio (RMTR) or electrophoretic mobility () of the Fmoc-amino acid-d-Ala-d-Ala peptide derivatives relative to the non-interacting standards, as a function of the concentration of Rist and Teic, yields a value for
Kb. These findings demonstrate the advantage of coupling on-column ligand synthesis to ACE for estimating binding parameters between antibiotics and ligands.Abbreviations Rist
Ristocetin
- Teic
Teicoplanin
- ACE
Affinity capillary electrophoresis
- RMTR
Relative migration time ratio 相似文献
5.
Interaction of albumins and heparinoids investigated by affinity capillary electrophoresis and free flow electrophoresis 下载免费PDF全文
《Electrophoresis》2018,39(4):569-580
A fast and precise affinity capillary electrophoresis (ACE) method has been applied to investigate the interactions between two serum albumins (HSA and BSA) and heparinoids. Furthermore, different free flow electrophoresis methods were developed to separate the species which appears owing to interaction of albumins with pentosan polysulfate sodium (PPS) under different experimental conditions. For ACE experiments, the normalized mobility ratios (∆R/Rf), which provided information about the binding strength and the overall charge of the protein‐ligand complex, were used to evaluate the binding affinities. ACE experiments were performed at two different temperatures (23 and 37°C). Both BSA and HSA interact more strongly with PPS than with unfractionated and low molecular weight heparins. For PPS, the interactions can already be observed at low mg/L concentrations (3 mg/L), and saturation is already obtained at approximately 20 mg/L. Unfractionated heparin showed almost no interactions with BSA at 23°C, but weak interactions at 37°C at higher heparin concentrations. The additional signals also appeared at higher concentrations at 37°C. Nevertheless, in most cases the binding data were similar at both temperatures. Furthermore, HSA showed a characteristic splitting in two peaks especially after interacting with PPS, which is probably attributable to the formation of two species or conformational change of HSA after interacting with PPS. The free flow electrophoresis methods have confirmed and completed the ACE experiments. 相似文献
6.
Summary Binding constants between the antibiotic ristocetin A (Rist A) and D-Ala-D-Ala terminus peptides were determined using affinity
capillary electrophoresis (ACE). In these experiments two techniques are used to obtain binding constants. In the first, a
plug of Rist A and non-interacting standards are injected and electrophoresed. Analysis of the change in the relative migration
time ratio (RMTR) of Rist, relative to the non-interacting standards, as a function of the concentration of peptide, yields a value for the
binding constant (Kb). In the second, samples of peptide and standards are injected and electrophoresed in increasing concentrations of Rist A
in the running buffer. Analysis using theRMTR yields aK
b. The findings described here demonstrate the advantage of using ACE for estimating binding parameters between antibiotics
and ligands. 相似文献
7.
The feasibility of using the affinity CE methodologies pre-equilibrium CZE and CE frontal analysis was tested on interaction systems exhibiting rapid on-and-off kinetics. Experimentally, the methodologies differ only with respect to the volume of sample introduced into the capillary. Pre-equilibrium CZE has been considered amendable to interactions with slow on-and-off kinetics only; however, it has recently been applied in studies of interactions with fast on-and-off kinetics. The effect of varying the sample volume introduced hydrodynamically into the capillary on the apparent degree of complexation was studied. For two different binding systems, the fraction of free analyte was found to be overestimated using pre-equilibrium CZE as compared to volumes providing plateau peak conditions as used with frontal analysis. Results indicate that frontal analysis conditions lead to more robust binding assays and thus more reliable data. The validity of data obtained by pre-equilibrium CZE may be low, thus the use of an experimental setup providing plateau peaks is highly recommended. It is suggested that the effect of altering the sample volume on the degree of binding should be investigated as part of method development and validation. 相似文献
8.
The potential use of affinity capillary electrophoresis in a microscale search for mutually interacting substances in biological fluid is demonstrated. Some disaccharides, especially gentiobiose (Gen), derivatized with 1-phenyl-3-methyl-5-pyrazolone, caused peak retardation when electrophoresed in a neutral running buffer, containing human serum. Gen, the most significantly retarded disaccharide, was converted to its negatively charged bis-mercaptoethanesulfonate derivative (MerESGen), and a serum sample was analyzed in a neutral buffer containing the derivatized disaccharide. Two peaks, belonging to the beta-globulin fraction, were found to be remarkably retarded in the buffer containing MerES-Gen in a concentration-dependent way. These findings prove an interaction between disaccharides and serum proteins. 相似文献
9.
Binding constants between the glycopeptides teicoplanin (Teic) and ristocetin (Rist) and their derivatives to D-Ala-D-Ala terminus peptides were determined by on-column receptor synthesis coupled to partial-filling affinity capillary electrophoresis (PFACE) or affinity capillary electrophoresis (ACE). In these techniques, the column is first partially filled with increasing concentrations of D-Ala-D-Ala terminus peptides. This is followed by plugs of buffer, antibiotic and two noninteracting standards, and acetic and/or succinic anhydride (and buffer in the case of ACE). The order of the reagent plugs containing the antibiotic and anhydride varies with the charge of the glycopeptide. Upon electrophoresis, the antibiotic reacts with the anhydride yielding a derivative of Teic or Rist. Continued electrophoresis results in the overlap of the derivatized antibiotic and the plug of D-Ala-D-Ala peptide. Analysis of the change in the relative migration time ratio (RMTR) of the new glycopeptide relative to the standards, as a function of the concentration of the D-Ala-D-Ala ligand yields a value for the binding constant K(b). The techniques described here can be used to assess how the derivatization of drugs alters their affinities for target molecules. 相似文献
10.
Capillary electrophoretic separation of 60 mer single-stranded DNA (ssDNA) and a single-base-substituted ssDNA was demonstrated using a size- and composition-controlled poly(ethylene glycol)-oligodeoxyribonucleotide block copolymer (PEG-b-ODN) as an affinity ligand. Under appropriate conditions, PEG-b-ODN and ssDNA with a complementary sequence formed a reversible complex via hybridization during the electrophoresis, while the copolymer did not interact with the single-base-substituted ssDNA. The copolymer's PEG length determined the electrophoretic mobility of the ssDNA; upon formation of the complex, the electrically neutral PEG added hydrodynamic friction to ssDNA. Simultaneously using two types of PEG-b-ODN copolymers whose PEG segments were of different lengths, we achieved the complete separation of the 60 mer ssDNA, its single-base-substituted ssDNA, and impurities. This method was sensitive enough to quantify a slight amount (approximately 1%) of the single-base-substituted ssDNA. The present results suggest that our approach is applicable to quantitative detection of minor genotypes. 相似文献
11.
Capillary zone electrophoresis is a proven method for separating small ions because of the inherent charge and differences in mobility of these analytes. Despite its resolving power, CZE can be insufficient for separating ions with similar mobilities. One remedy is to modify mobilities via the addition of background electrolyte complexation agents. However, this approach is not straightforward for inorganic anions, which lack complexation options. To address this shortfall, the diprotonated diamine moiety was investigated for complexation of dianions. Dicationic diamines significantly complexed dianions, and this interaction was not purely electrostatic in nature because affinities varied with dianion identity. Aqueous association constants were measured with affinity capillary electrophoresis (ACE) and found to be similar in magnitude but different in selectivity to those of dianions with magnesium ion. Binding was also investigated for zwitterionic buffers containing the protonated diamine moiety. Zwitterions exhibited binding constants as high as 18 M?1 (30‐mM ionic strength). This work discusses the observed binding constants and their potential usefulness in CZE separations of inorganic anions. Also covered are improvements to ACE methodology and an evaluation of some of the assumptions employed. 相似文献
12.
Biomolecules such as serum proteins can interact with drugs in the body and influence their pharmaceutical effects. Specific and precise methods that analyze these interactions are critical for drug development or monitoring and for diagnostic purposes. Affinity capillary electrophoresis (ACE) is one technique that can be used to examine the binding between drugs and serum proteins, or other agents found in serum or blood. This article will review the basic principles of ACE, along with related affinity-based capillary electrophoresis (CE) methods, and examine recent developments that have occurred in this field as related to the characterization of drug–protein interactions. An overview will be given of the various formats that can be used in ACE and CE for such work, including the relative advantages or weaknesses of each approach. Various applications of ACE and affinity-based CE methods for the analysis of drug interactions with serum proteins and other binding agents will also be presented. Applications of ACE and related techniques that will be discussed include drug interaction studies with serum agents, chiral drug separations employing serum proteins, and the use of CE in hybrid methods to characterize drug binding with serum proteins. 相似文献
13.
We prepared iminodiacetic acid (IDA)-modified and Cu(II)-IDA-modified capillaries through polymerization of N-(vinylbenzylimino) diacetic acid. The fundamental performance of these capillaries was examined in capillary liquid chromatography (LC) and immobilized metal chelate affinity capillary electrophoresis (IMACE). Copper(II), cobalt(II), and hematin were detected at different retention times by means of capillary LC with a chemiluminescence detector, during which the IDA-modified capillary was used. The difference in the retention times was attributed to the difference in the interaction between metal ions or complex and IDA moieties on the inner wall of the capillary. In addition, human serum albumin (HSA) and human serum gamma-globulin (HgammaG) were separated and detected using IMACE with an absorption detector, during which the Cu(II)-IDA-modified capillary was used. The separation of HSA and HgammaG was achieved through the interaction between proteins and Cu(II) chelate moieties on the inner wall of this capillary. 相似文献
14.
Abby Brown Robert Desharnais Bidhan C. Roy Sanku Malik Frank A. Gomez 《Analytica chimica acta》2005,540(2):291-410
This work details the determination of the minimal injection time of ligand required in flow-through partial-filling affinity capillary electrophoresis (FTPFACE) to estimate binding constants of ligands to receptors. Two model systems are examined in this study: carbonic anhydrase B (CAB, EC 4.2.1.1) and arylsulfonamides, and vancomycin from Streptomyces orientalis and d-Ala-d-Ala peptides. Using CAB, a minimal injection time of 0.07 min at high pressure was determined that provided for the accurate and reproducible measurement of binding constants. In the FTPFACE technique, the capillary is first partially filled with a zone of ligand followed by a sample plug containing receptor and non-interacting standards. Upon application of a voltage the receptor and standards flow into the zone of ligand where a dynamic equilibrium is achieved between receptor and ligand. Continued electrophoresis results in the receptor and standards flowing through the domain of the ligand plug prior to detection. Analysis of the change in the relative migration time ratio (RMTR) of the receptor, relative to the non-interacting standards, as a function of the concentration of ligand, yields a value for the binding constant. In the present study, variable injection times of 4-carboxybenzenesulfonamide (CBSA) were examined to determine the minimal injection time needed to establish an equilibrium between CAB and ligand. A mathematical relationship was derived that correlated injection time and ligand concentration to the change in RMTR and comparisons made between the experimental and calculated values. Binding constants were obtained for a series of arylsulfonamide ligands and d-Ala-d-Ala terminus peptides to CAB and Van, respectively. The results support the use of FTPFACE to estimate affinity constants under variable experimental conditions. 相似文献
15.
An on-line affinity selection method using a polymeric monolithic support is proposed for the retention of histidine-containing peptides and their subsequent separation by capillary zone electrophoresis (CZE). Monolithic capillary columns were prepared in fused-silica capillaries of 150 mum inner diameter (ID) by ionizing radiation-initiated in situ polymerization and cross-linking of diethylene glycol dimethacrylate and glycidyl methacrylate, and chemically modified with iminodiacetic acid (IDA) and copper ion. Monolithic microextractors were coupled on-line near the inlet of the separation capillary (fused-silica capillary, 75 mum ID x 28 cm from the microextractor to the detector). Model peptide mixtures of histidine-containing and histidine-noncontaining peptides were assessed. Peptides were released from the sorbent by a 5 mM imidazole solution and then separated by CZE with ultraviolet detection. Relative standard deviation values for migration times and corrected peak areas were found to be lower than 5.8 and 10.5%, respectively. IDA-Cu(II) ion modified monolithic microextractors showed a chromatographic behavior and could be reused at least 25 times. The use of monolithic supports proved to be an advantageous alternative to packed particles for the preparation of microextractors. 相似文献
16.
Abderrahim A?t Adoubel Christophe J. Morin Nadine Mofaddel Georges Dupas Paul-Louis Desbène 《Analytical and bioanalytical chemistry》2009,394(2):597-608
Enantiomer separations of underivatised amino acids were carried out by using ligand exchange capillary electrophoresis (LECE). Chiral discrimination is based on the formation of ternary complexes between copper(II), a chiral selector (L-proline or trans-4-hydroxy-L-proline) and an amino acid. All amino acids containing aromatic moieties or not were detected at 214 nm because of their interactions with copper(II). In order to reduce copper(II) adsorption onto capillary walls, we used hexadimethrine bromide to reverse the electroosmotic flow. Using this original strategy, the studied enantiomers migrated in the opposite direction of the anodic electroosmosis. After optimising the analytical conditions taking into account the chiral resolution and the detection sensitivity, we performed very satisfactory enantioseparations not only of aromatic amino acids (tryptophan, tyrosine, phenylalanine and histidine) but also of aliphatic amino acids (threonine, serine, isoleucine and valine). These enantioseparations were performed in a short analysis time at 35 °C. In order to rationalise the obtained results, we evaluated the complexation constants corresponding to the formed ternary complexes by capillary electrophoresis and we used molecular mechanics modelling. 相似文献
17.
Hana Mlčochová Ratih Ratih Lenka Michalcová Hermann Wätzig Zdeněk Glatz Matthias Stein 《Electrophoresis》2022,43(16-17):1724-1734
In this study, two capillary electrophoresis–based ligand binding assays, namely, mobility shift affinity capillary electrophoresis (ms-ACE) and capillary electrophoresis-frontal analysis (CE-FA), were applied to determine binding parameters of human serum albumin toward small drugs under similar experimental conditions. The substances S-amlodipine (S-AML), lidocaine (LDC), l -tryptophan (l -TRP), carbamazepine (CBZ), ibuprofen (IBU), and R-verapamil (R-VPM) were used as the main binding partners. The scope of this comparative study was to estimate and compare both the assays in terms of their primary measure's precision and the reproducibility of the derived binding parameters. The effective mobility could be measured with pooled CV values between 0.55% and 7.6%. The precision of the r values was found in the range between 1.5% and 10%. Both assays were not universally applicable. The CE-FA assay could successfully be applied to measure the drugs IBU, CBZ, and LDC, and the interaction toward CBZ, S-AML, l -TRP, and R-VPM could be determined using ms-ACE. The average variabilities of the estimated binding constants were 64% and 67% for CE-FA and ms-ACE, respectively. 相似文献
18.
Affinity capillary electrophoresis for the assessment of binding affinity of carbohydrate‐based cholera toxin inhibitors 下载免费PDF全文
《Electrophoresis》2018,39(2):344-347
Developing tools for the study of protein carbohydrate interactions is an important goal in glycobiology. Cholera toxin inhibition is an interesting target in this context, as its inhibition may help to fight against cholera. For the study of novel ligands an affinity capillary electrophoresis (ACE) method was optimized and applied. The method uses unlabeled cholera toxin B‐subunit (CTB) and unlabeled carbohydrate ligands based on ganglioside GM1‐oligosaccharides (GM1os). In an optimized method at pH 4, adsorption of the protein to the capillary walls was prevented by a polybrene‐dextran sulfate‐polybrene coating. Different concentrations of the ligands were added to the BGE. CTB binding was observed by a mobility shift that could be used for dissociation constant (Kd) determination. The Kd values of two GM1 derivatives differed by close to an order of magnitude (600 ± 20 nM and 90 ± 50 nM) which was in good agreement with the differences in their reported nanomolar IC50 values of an ELISA‐type assay. Moreover, the selectivity of GM1os towards CTB was demonstrated using Influenza hemagglutinin (H5) as a binding competitor. The developed method can be an important platform for preclinical development of drugs targeting pathogen‐induced secretory diarrhea. 相似文献
19.
We have developed an affinity capillary electrophoresis (ACE) method for detection of gene point mutations using a DNA-polyacrylamide conjugate as a pseudostationary affinity phase. In this study, the target DNA was prepared by mixing two PCR products: the wild type of K-ras gene and its codon 12 point mutant. The ligand DNA was designed to be complementary to codons 11 and 12 of the wild type. The target DNA was denatured by the addition of formamide and by heating at 95 degrees C for 5 min, and then electrophoretically separated by difference in affinity to the pseudoimmobilized ligand DNA. The method successfully separated a mixture of the wild-type DNA and each of six codon 12 point mutants by the same ligand DNA. The limit of mutation detection was determined by mixing the wild-type DNA with decreasing concentrations of the mutant DNA. The lowest level of detection was 10% mutant DNA in a background of the wild type. The practicability of this method has been confirmed using a colorectal carcinoma cell line. This study is the first demonstration of detection of gene point mutation in polymerase chain reaction (PCR) products using ACE, and opens up a new possibility of CE-based gene diagnosis. 相似文献
20.
Castagnola M Rossetti DV Inzitari R Vitali A Lupi A Zuppi C Cabras T Fadda MB Petruzzelli R Giardina B Messana I 《Electrophoresis》2003,24(5):801-807
Measurements by capillary electrophoresis (CE) of bacitracin A(1) effective mobility at different pH values permitted to estimate the five acidic dissociation constants and the Stokes radii at different protonation stages of the macrocyclic dodecapeptide. The pK(a) values were 3.6 and 4.4 for the two carboxylic groups of the lateral chains of D-Asp-11 and D-Glu-4, respectively, 6.4 for the aza-atom of the imidazole ring of His-10, 7.6 for the amino group of N-terminal Ile-1 and 9.7 for the delta-amino group of D-Orn-7, very close to the values obtained by other researchers by titration experiments. In agreement with a rigid macrocyclic structure the Stokes radii of different protonated forms ranged only between 14.3 and 14.8 A. Best fitting procedures performed on experimental mobility measured at two different pH values (5.50 and 6.72) in the presence of increasing Zn(+2) concentration allowed confirming the model that assumes the binding of Zn(+2) to P(0) peptide form with a 1.5 x 10(3) M(-1) intrinsic association constant. Following to Zn(+2) binding, the pK(a) of the amino group of N-terminal Ile-1 is shifted from 7.6 to 5.9 and the Stokes radius is reduced of about 3 A. The mean charge of the bacitracin A(1)-Zn(+2) complex resulted +1.67 and +1.12 at pH 5.50 and 6.72, respectively. These results suggest that the amino group of N-terminal Ile-1 is not essential for Zn(+2) binding. 相似文献