首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hybrid micromotors capable of both chemically powered propulsion and fuel‐free light‐driven actuation and offering built‐in optical brakes for chemical propulsion are described. The new hybrid micromotors are designed by combining photocatalytic TiO2 and catalytic Pt surfaces into a Janus microparticle. The chemical reactions on the different surfaces of the Janus particle hybrid micromotor can be tailored by using chemical or light stimuli that generate counteracting propulsion forces on the catalytic Pt and photocatalytic TiO2 sides. Such modulation of the surface chemistry on a single micromotor leads to switchable propulsion modes and reversal of the direction of motion that reflect the tuning of the local ion concentration and hence the dominant propulsion force. An intermediate Au layer (under the Pt surface) plays an important role in determining the propulsion mechanism and operation of the hybrid motor. The built‐in optical braking system allows “on‐the‐fly” control of the chemical propulsion through a photocatalytic reaction on the TiO2 side to counterbalance the chemical propulsion force generated on the Pt side. The adaptive dual operation of these chemical/light hybrid micromotors, associated with such control of the surface chemistry, holds considerable promise for designing smart nanomachines that autonomously reconfigure their propulsion mode for various on‐demand operations.  相似文献   

2.
We report core@satellite Janus mesoporous silica‐Pt@Au (JMPA) nanomotors with pH‐responsive multi‐phoretic propulsion. The JMPA nanomotors first undergo self‐diffusiophoretic propulsion in 3.0 % H2O2 due to the isolation of the Au nanoparticles (AuNPs) from the PtNPs layer. Then the weak acidity of H2O2 can trigger the disassembly and reassembly of the AuNPs, resulting in the Janus distribution of large AuNPs aggregates. Such reconstruction of JMPA leads to the contact between PtNPs and AuNPs aggregates, thus changing the propulsion mechanism to self‐electrophoresis. The asymmetric and aggregated AuNPs also enable the generation of a thermal gradient under laser irradiation, which propels the JMPA nanomotors by self‐thermophoresis. Such multi‐phoretic propulsion offers considerable promise for developing advanced nanomachines with a stimuli‐responsive switch of propulsion modes in biomedical applications.  相似文献   

3.
The engineering of self‐propelled micro‐/nanomotors (MNMs) with continuously variable speeds, akin to macroscopic automobiles equipped with a continuously variable transmission, is still a huge challenge. Herein, after grafting with salt‐responsive poly[2‐(methacryloyloxy)ethyltrimethylammonium chloride] (PMETAC) brushes, bubble‐propelled Janus microcapsule motors with polyelectrolyte multilayers exhibited adjustable speeds when the type and concentration of the counterion was changed. Reversible switching between low‐ and high‐speed states was achieved by modulating the PMETAC brushes between hydrophobic and hydrophilic configurations by ion exchange with ClO4? and polyphosphate anions. This continuously variable regulation enabled control of the speed in an accurate and predictable manner and an autonomous response to the local chemical environment. This study suggests that the integration of polymer brushes with precisely adjustable responsiveness offers a promising route for motion control of smart MNMs that act like their counterparts in living systems.  相似文献   

4.
Recently, a facile method for the synthesis of size‐monodisperse Pt, Pt3Sn, and PtSn intermetallic nanoparticles (iNPs) that are confined within a thermally robust mesoporous silica (mSiO2) shell was introduced. These nanomaterials offer improved selectivity, activity, and stability for large‐scale catalytic applications. Here we present the first study of parahydrogen‐induced polarization NMR on these Pt‐Sn catalysts. A 3000‐fold increase in the pairwise selectivity, relative to the monometallic Pt, was observed using the PtSn@mSiO2 catalyst. The results are explained by the elimination of the three‐fold Pt sites on the Pt(111) surface. Furthermore, Pt‐Sn iNPs are shown to be a robust catalytic platform for parahydrogen‐induced polarization for in vivo magnetic resonance imaging.  相似文献   

5.
Nitrogen and phosphorus co‐doped hierarchical micro/mesoporous carbon (N,P‐MMC) was prepared by simple thermal treatment of freeze‐dried okra in the absence of any other additives. The 0.96 wt % of N and 1.47 wt % of P were simultaneously introduced into the graphitic framework of N,P‐MMC, which also possesses hierarchical porous structure with mesopores centered at 3.6 nm and micropores centered at 0.79 nm. Most importantly, N,P‐MMC carbon exhibits excellent catalytic activity for electrocatalytic reduction of H2O2, resulting in a new strategy to construct non‐enzymatic H2O2 sensor. The N,P‐MMC‐based H2O2 sensor displays two linear detection range about 0.1 mM–10 mM (R2=0.9993) and 20 mM–200 mM (R2=0.9989), respectively. The detection limit is estimated to be 6.8 μM at a signal‐to‐noise ratio of 3. These findings provide insights into synthesizing functional heteroatoms doped porous carbon materials for biosensing applications.  相似文献   

6.
Poly[(S)‐3‐vinyl‐2,2′‐dihydroxy‐1,1′‐binaphthyl] (L*) was obtained by taking off the protecting groups of poly[(S)‐3‐vinyl‐2,2′‐bis(methoxymethoxy)‐1,1′‐binaphthyl] (poly‐ 1 ). L* was proved to keep a stable helical conformation in solution. The application of helical L* in the asymmetric addition of diethylzinc to aldehydes has been studied. The catalytic system employing 10 mol% of L* and 150 mol% of Ti(OiPr)4 was found to promote the addition of diethylzinc to a wide range of aromatic aldehydes, giving up to 99% enantiomeric excess (ee) and up to 93% yield of the corresponding secondary alcohol at 0°C. The chiral polymer can be easily recovered and reused without loss of catalytic activity as well as enantioselectivity.  相似文献   

7.
《化学:亚洲杂志》2018,13(18):2714-2722
Currently, the base‐free aerobic oxidation of biomass‐derived 5‐hydroxymethylfurfural (HMF) to produce 2,5‐furandicarboxylic acid (FDCA) is attracting intense interest due to its prospects for the green, sustainable, and promising production of biomass‐based aromatic polymers. Herein, we have developed a new Pt catalyst supported on nitrogen‐doped‐carbon‐decorated CeO2 (NC‐CeO2) for the aerobic oxidation of HMF in water without the addition of any homogeneous base. It was demonstrated that the small‐sized Pt particles could be well dispersed on the surface of the hybrid NC‐CeO2 support, and the activity of the supported Pt catalyst depended strongly on the surface structure and properties of the catalysts. The as‐fabricated Pt/NC‐CeO2 catalyst, with abundant surface defects, enhanced basicity, and favorable electron‐deficient metallic Pt species, enabled an almost 100 % yield of FDCA in water with molecular oxygen (0.4 MPa) at 110 °C for 8 h without the addition of any homogeneous base, which is indicative of exceptional catalytic performance. Furthermore, this Pt/NC‐CeO2 catalyst also showed good stability and reusability owing to strong metal–support interactions. An understanding of the role of surface structural defects and basicity of the hybrid NC‐CeO2 support provides a basis for the rational design of high‐performance and stable supported metal catalysts with practical applications in various transformations of biomass‐derived compounds.  相似文献   

8.
A set of eight helical diamines were designed and synthesized to demonstrate their relevance as all‐in‐one materials for multifarious applications in organic light‐emitting diodes (OLEDs), that is, as hole‐transporting materials (HTMs), EMs, bifunctional hole transporting + emissive materials, and host materials. Azahelical diamines function very well as HTMs. Indeed, with high Tg values (127–214 °C), they are superior alternatives to popular N,N′‐di(1‐naphthyl)‐N,N′‐diphenyl‐(1,1′‐biphenyl)‐4,4′‐diamine (NPB). All the helical diamines exhibit emissive properties when employed in nondoped as well as doped devices, the performance characteristics being superior in the latter. One of the carbohelical diamines (CHTPA) serves the dual function of hole transport as well as emission in simple double‐layer devices; the efficiencies observed were better by quite some margin than those of other emissive helicenes reported. The twisting endows helical diamines with significantly high triplet energies such that they also function as host materials for red and green phosphors, that is, [Ir(btp)2acac] (btp=2‐(2′‐benzothienyl)pyridine; acac=acetylacetonate) and [Ir(ppy)3] (ppy=2‐phenylpyridine), respectively. The results of device fabrications demonstrate how helicity/ helical scaffold may be diligently exploited to create molecular systems for maneuvering diverse applications in OLEDs.  相似文献   

9.
Flexible thermoresponsive polymeric microjets are formed by the self‐folding of polymeric layers containing a thin Pt film used as catalyst for self‐propulsion in solutions containing hydrogen peroxide. The flexible microjets can reversibly fold and unfold in an accurate manner by applying changes in temperature to the solution in which they are immersed. This effect allows microjets to rapidly start and stop multiple times by controlling the radius of curvature of the microjet. This work opens many possibilities in the field of artificial nanodevices, for fundamental studies on self‐propulsion at the microscale, and also for biorelated applications.  相似文献   

10.
The effects of particle size and kinetics of Pt/activated carbon (AC) catalysts on catalytic oxidation of formaldehyde (HCHO) were investigated. AC, f‐SiO2 and MCM‐41 were used as supports to prepare low‐Pt‐content catalysts using H2 reduction. Pt/AC catalyst shows the highest activity with the largest Pt particle size. By contrast, 0.1 wt% Pt/AC reduced using KBH4 has much higher activity than that reduced using H2, which can oxidize HCHO completely over 6000 ppm at 60°C in a fixed bed reactor. Transmission electron microscopy and X‐ray photoelectron spectroscopy results indicate that Pt/AC‐KBH4 has larger Pt particles and lower valence state than Pt/AC‐H2, which may be attributed to the ligand effect between Pt4+ and the AC support. The result of O2 temperature‐programmed oxidation suggests that highly dispersed Pt4+ ions have stronger interaction with AC support and thus are harder to be reduced by H2. Furthermore, Pt/AC is structure‐sensitive and larger‐sized Pt particles result in a high conversion of HCHO. Investigation of kinetics indicated that it is a zero‐order reaction for such a high HCHO concentration condition for Pt/AC‐KBH4.  相似文献   

11.
Single‐handed, helical, 4,4′‐biphenylene‐bridged polybissilsesquioxane nanotubes were prepared by using the self‐assemblies of a pair of chiral low‐molecular‐weight gelators as templates. Single‐handed, helical, carbon/silica nanotubes were obtained after carbonization of the self‐assemblies, and single‐handed helical carbonaceous nanotubes were then obtained by removal of silica with aqueous HF. Samples were characterized by using field‐emission SEM, TEM, X‐ray diffraction, thermogravimetric analysis, Raman spectroscopy, and circular dichroism. The polysilsesquioxane and carbonaceous structures exhibited optical activity. The walls of the carbon/silica and carbonaceous nanotubes were predominantly amorphous carbon. The surface area of the left‐handed, helical, carbonaceous nanotubes was 1439 m2 g?1, and such materials have potential applications as catalyst supports, chirality sensors, supercapacitor electrodes, and adsorbents.  相似文献   

12.
Well‐dispersed carbon‐coated or nitrogen‐doped carbon‐coated copper‐iron alloy nanoparticles (FeCu@C or FeCu@C?N) in carbon‐based supports are obtained using a bimetallic metal‐organic framework (Cu/Fe‐MOF‐74) or a mixture of Cu/Fe‐MOF‐74 and melamine as sacrificial templates and an active‐component precursor by using a pyrolysis method. The investigation results attest formation of Cu?Fe alloy nanoparticles. The obtained FeCu@C catalyst exhibits a catalytic activity with a half‐wave potential of 0.83 V for oxygen reduction reaction (ORR) in alkaline medium, comparable to that on commercial Pt/C catalyst (0.84 V). The catalytic activity of FeCu@C?N for ORR (Ehalf‐wave=0.87 V) outshines all reported analogues. The excellent performance of FeCu@C?N should be attributed to a change in the energy of the d‐band center of Cu resulting from the formation of the copper–iron alloy, the interaction between alloy nanoparticles and supports and N‐doping in the carbon matrix. Moreover, FeCu@C and FeCu@C?N show better electrochemical stability and methanol tolerance than commercial Pt/C and are expected to be widely used in practical applications.  相似文献   

13.
CdS quantum dots/C60 tubular micromotors with chemical/multi‐light‐controlled propulsion and “on‐the‐fly” acceleration capabilities are described. In situ growth of CdS quantum dots on the outer fullerene layer imparts this layer with light‐responsive properties in connection to inner Pt, Pd or MnO2 layers. This is the first time that visible light is used to drive bubble‐propelled tubular micromotors. The micromotors exhibit a broad absorption range from 320 to 670 nm and can be wirelessly controlled by modulating light intensity and peroxide concentration. The built‐in accelerating optical system allows for the control of the velocity over the entire UV/Vis light spectra by modulating the catalyst surface chemistry. The light‐responsive properties have been also exploited to accelerate the chemical dealloying and propulsion of micromotors containing a Cu/Pd layer. Such dual operated hybrid micromotors hold considerable promise for designing smart micromachines for on‐demand operations, motion‐based sensing, and enhanced cargo transportation.  相似文献   

14.
A new type of semitransparent SnS2 nanosheet (NS) films were synthesized using a simple and environmentally friendly solution‐processed approach, which were subsequently used as a counter electrode (CE) alternative to the noble metal Pt for triiodide reduction in dye‐sensitized solar cells (DSSCs). The resultant SnS2‐based CE with a thickness of about 300 nm exhibited excellent electrochemical catalytic activity for catalyzing the reduction of triiodide and demonstrated comparable power conversion efficiency of 7.64 % with that of expensive Pt‐based CE in DSSCs (7.71 %). When functionalized with a small amount of carbon nanoparticles, the SnS2 NS‐based CE showed even better performance of 8.06 % than Pt under the same conditions. Considering the facile fabrication method, optical transparency, low cost, and remarkable catalytic property, this study on SnS2 NSs may shed light on the large‐scale production of electrocatalytic electrode materials for low‐cost photovoltaic devices.  相似文献   

15.
New Pd(Pt) catalysts have been fabricated by assembling multicomponents of Fe3O4 and CeO2/Pd(Pt) on the surface of reduced graphene oxide (RGO) nanosheets in layers. The as‐obtained Pd(Pt) catalysts exhibit extremely high catalytic activity in the selective hydrogenation reaction of nitrobenzene. Owing to the presence of Fe3O4, the catalysts can be easily recycled from the catalytic system through magnetic separation. Their high activity, stability, and magnetic recyclability make the as‐obtained hybrids very promising as catalysts in catalytic applications. Compared to other traditional multishell magnetic catalysts that were prepared by means of layer‐by‐layer technology, our process is much more facile and more easily controlled.  相似文献   

16.
We report a carbonaceous nanobottle (CNB) motor for near infrared (NIR) light‐driven jet propulsion. The bottle structure of the CNB motor is fabricated by soft‐template‐based polymerization. Upon illumination with NIR light, the photothermal effect of the CNB motor carbon shell causes a rapid increase in the temperature of the water inside the nanobottle and thus the ejection of the heated fluid from the open neck, which propels the CNB motor. The occurrence of an explosion, the on/off motion, and the swing behavior of the CNB motor can be modulated by adjusting the NIR light source. Moreover, we simulated the physical field distribution (temperature, fluid velocity, and pressure) of the CNB motor to demonstrate the mechanism of NIR light‐driven jet propulsion. This NIR light‐powered CNB motor exhibits fuel‐free propulsion and control of the swimming velocity by external light and has great potential for future biomedical applications.  相似文献   

17.
Three‐dimensional (3D) Pt‐based alloy nanostructures composed of one‐dimensional (1D) nanowires/nanorods have recently attracted significant interest as electrocatalysts. In this work, we report an effective solvothermal method for the direct preparation of 3D Pt–Co nanowire assemblies (NWAs) with tunable composition. The composition‐ and structure‐dependent electrocatalytic performance is thoroughly investigated. Because of the bimetallic synergetic effect and unique structural advantage, the as‐prepared 3D Pt3Co NWA outperforms commercial Pt/carbon and Pt black catalysts and even 3D Pt NWA. The electrochemical results demonstrate that the 3D Pt3Co NWA is indeed a promising electrocatalyst with enhanced catalytic activity and improved durability for practical electrocatalytic applications.  相似文献   

18.
A solid‐state fluorescent host system was created by self‐assembly of a 21‐helical columnar organic fluorophore composed of (1R,2S)‐2‐amino‐1,2‐diphenylethanol and fluorescent 1‐pyrenecarboxylic acid. This host system has a characteristic 21‐helical columnar hydrogen‐ and ionic‐bonded network. Channel‐like cavities are formed by self‐assembly of this column, and various guest molecules can be included by tuning the packing of this column. Moreover, the solid‐state fluorescence of this host system can change according to the included guest molecules. This occurs because of the change in the relative arrangement of the pyrene rings as they adjust to the tuning of the packing of the shared 21‐helical column, according to the size of the included guest molecules. Therefore, this host system can recognize slight differences in molecular size and shape.  相似文献   

19.
Cost‐effective and high‐performance electrocatalysts for oxygen reduction reactions (ORR) are needed for many energy storage and conversion devices. Here, we demonstrate that whey powder, a major by‐product in the dairy industry, can be used as a sustainable precursor to produce heteroatom doped carbon electrocatalysts for ORR. Rich N and S compounds in whey powders can generate abundant catalytic active sites. However, these sites are not easily accessible by reactants of ORR. A dual‐template method was used to create a hierarchically and interconnected porous structure with micropores created by ZnCl2 and large mesopores generated by fumed SiO2 particles. At the optimum mass ratio of whey power: ZnCl2 : SiO2 at 1 : 3 : 0.8, the resulting carbon material has a large specific surface area close to 2000 m2 g?1, containing 4.6 at.% of N with 39.7% as pyridinic N. This carbon material shows superior electrocatalytic activity for ORR, with an electron transfer number of 3.88 and a large kinetic limiting current density of 45.40 mA cm?2. They were employed as ORR catalysts to assemble primary zinc‐air batteries, which deliver a power density of 84.1 mW cm?2 and a specific capacity of 779.5 mAh g?1, outperforming batteries constructed using a commercial Pt/C catalyst. Our findings open new opportunities to use an abundant biomaterial, whey powder, to create high‐value‐added carbon electrocatalysts for emerging energy applications.  相似文献   

20.
2,5‐Bis[4‐methyl‐3‐(pyridin‐3‐yl)phenyl]‐1,3,4‐oxadiazole (L), C26H20N4O, forms one‐dimensional chains via two types of intermolecular π–π interactions. In catena‐poly[[dichloridozinc(II)]‐μ‐2,5‐bis[4‐methyl‐3‐(pyridin‐3‐yl)phenyl]‐1,3,4‐oxadiazole], [ZnCl2(C26H20N4O)]n, synthesized by the combination of L with ZnCl2, the ZnII centres are coordinated by two Cl atoms and two N atoms from two L ligands. [ZnCl2L]n forms one‐dimensional P (plus) and M (minus) helical chains, where the L ligand has different directions of twist. The helical chains stack together via interchain π–π and C—H...π interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号