首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ZIF‐7, built as an assembly of ZnII centers and benzimidazolate ligands, shows prominent S‐shaped isotherms upon CO2 adsorption that can be attributed to sorbate‐induced gate‐opening phenomena involving a narrow‐to‐large pore phase transition. This peculiar sorption pattern can be captured via the formulation of thermodynamic isotherms, providing a direct enthalpic and entropic view of the gate‐opening process. Relying on such an approach, an energy barrier with preferential enthalpic nature for CO2 adsorption/desorption in the gate‐opening region could be unveiled. Moreover, the elastic energy involved during the gate‐opening process was revisited to 1.4–2.8 kJ mol?1 of solid in the temperature range 273–323 K, matching the value measured by isostatic compression of a ZIF‐7_lp sample filled with DMF and showing a dominant entropic contribution.  相似文献   

2.
Covalent organic frameworks are a new class of crystalline organic polymers possessing a high surface area and ordered pores. Judicious selection of building blocks leads to strategic heteroatom inclusion into the COF structure. Owing to their high surface area, exceptional stability and molecular tunability, COFs are adopted for various potential applications. The heteroatoms lining in the pores of COF favor synergistic host–guest interaction to enhance a targeted property. In this report, we have synthesized a resorcinol‐phenylenediamine‐based COF which selectively adsorbs CO2 into its micropores (12 Å). The heat of adsorption value (32 kJ mol?1) obtained from the virial model at zero‐loading of CO2 indicates its favorable interaction with the framework. Furthermore, we have anchored small‐sized Ag nanoparticles (≈4–5 nm) on the COF and used the composite for chemical fixation of CO2 to alkylidene cyclic carbonates by reacting with propargyl alcohols under ambient conditions. Ag@COF catalyzes the reaction selectively with an excellent yield of 90 %. Recyclability of the catalyst has been demonstrated up to five consecutive cycles. The post‐catalysis characterizations reveal the integrity of the catalyst even after five reaction cycles. This study emphasizes the ability of COF for simultaneous adsorption and chemical fixation of CO2 into corresponding cyclic carbonates.  相似文献   

3.
This work shows that a hollow and microporous metal-free N,N′-phenylenebis(salicylideneimine) (salphen) network (H-MSN) can be engineered by Sonogashira coupling of [tetraiodo{di(Zn-salphen)}] building blocks with 1,4-diethynylbenzene in the presence of silica templates and by successive Zn and silica etching. Iron(III) ions could be incorporated into the H-MSN to form hollow and microporous Fe–disalphen networks (H-MFeSN) with enhanced microporosity and surface area. The H-MFeSN showed efficient catalytic performance and recyclability in the CO2 conversion to cyclic carbonates.  相似文献   

4.
The concentration of carbon dioxide (CO2) in the atmosphere is increasing at an alarming rate resulting in undesirable environmental issues. To mitigate this growing concentration of CO2, selective carbon capture and storage/sequestration (CCS) are being investigated intensively. However, CCS technology is considered as an expensive and energy‐intensive process. In this context, selective carbon capture and utilization (CCU) as a C1 feedstock to synthesize value‐added chemicals and fuels is a promising step towards lowering the concentration of the atmospheric CO2 and for the production of high‐value chemicals. Towards this direction, several strategies have been developed to convert CO2, a Greenhouse gas (GHG) into useful chemicals by forming C?N, C?O, C?C, and C?H bonds. Among the various CO2 functionalization processes known, the cycloaddition of CO2 to epoxides has gained considerable interest owing to its 100% atom‐economic nature producing cyclic carbonates or polycarbonates in high yield and selectivity. Among the various classes of catalysts studied for cycloaddition of CO2 to cyclic carbonates, porous metal‐organic frameworks (MOFs) have gained a special interest due to their modular nature facilitating the introduction of a high density of Lewis acidic (LA) and CO2‐philic Lewis basic (LB) functionalities. However, most of the MOF‐based catalysts reported for cycloaddition of CO2 to respective cyclic carbonates in high yields require additional co‐catalyst, say tetra‐n‐butylammonium bromide (TBAB). On the contrary, the co‐catalyst‐free conversion of CO2 using rationally designed MOFs composed of both LA and LB sites is relatively less studied. In this review, we provide a comprehensive account of the research progress in the design of MOF based catalysts for environment‐friendly, co‐catalyst‐free fixation of CO2 into cyclic carbonates.  相似文献   

5.
Charge-separated metal–organic frameworks (MOFs) are a unique class of MOFs that can possess added properties originating from the exposed ionic species. A new charge-separated MOF, namely, UNM-6 synthesized from a tetrahedral borate ligand and Co2+ cation is reported herein. UNM-6 crystalizes into the highly symmetric P43n space group with fourfold interpenetration, despite the stoichiometric imbalance between the B and Co atoms, which also leads to loosely bound NO3 anions within the crystal structure. These NO3 ions can be quantitatively exchanged with various other anions, leading to Lewis acid (Co2+) and Lewis base (anions) pairs within the pores and potentially cooperative catalytic activities. For example, UNM-6-Br, the MOF after anion exchange with Br anions, displays high catalytic activity and stability in reactions of CO2 chemical fixation into cyclic carbonates.  相似文献   

6.
High‐entropy materials refer to a kind of materials in which five or more metal species were incorporated deliberately into a single lattice with random occupancy. Up to now, such a concept has been only restricted to hard materials, such as high‐entropy alloys and ceramics. Herein we report the synthesis of hybrid high‐entropy materials, polymetallic zeolitic imidazolate framework (also named as high‐entropy zeolitic imidazolate framework, HE‐ZIF), via entropy‐driven room‐temperature mechanochemistry. HE‐ZIF contains five metals including ZnII, CoII, CdII, NiII, and CuII which are dispersed in the ZIF structure randomly. Moreover, HE‐ZIF shows enhanced catalytic conversion of CO2 into carbonate compared with ZIF‐8 presumably a result of the synergistic effect of the five metal ions as Lewis acid in epoxide activation.  相似文献   

7.
Transforming CO2 into value-added chemicals has been an important subject in recent years. The development of a novel heterogeneous catalyst for highly effective CO2 conversion still remains a great challenge. As an emerging class of porous organic polymers, covalent organic frameworks (COFs) have exhibited superior potential as catalysts for various chemical reactions, due to their unique structure and properties. In this study, a layered two-dimensional (2D) COF, IM4F-Py-COF, was prepared through a three-component condensation reaction. Benzimidazole moiety, as an ionic liquid precursor, was integrated onto the skeleton of the COF using a benzimidazole-containing building unit. Ionization of the benzimidazole framework was then achieved through quaternization with 1-bromobutane to produce an ionic liquid-immobilized COF, i.e., BMIM4F-Py-COF. The resulting ionic COF shows excellent catalytic activity in promoting the chemical fixation of CO2 via reaction with epoxides under solvent-free and co-catalyst-free conditions. High porosity, the one-dimensional (1D) open-channel structure of the COF and the high catalytic activity of ionic liquid may contribute to the excellent catalytic performance. Moreover, the COF catalyst could be reused at least five times without significant loss of its catalytic activity.  相似文献   

8.
The development of efficient heterogeneous catalysts suitable for carbon capture and utilization (CCU) under mild conditions is a promising step towards mitigating the growing concentration of CO2 in the atmosphere. Herein, we report the construction of a hydrogen-bonded 3D framework, {[Zn(hfipbba)(MA)]⋅3 DMF}n (hfipbba=4,4′-(hexaflouroisopropylene)bis(benzoic acid)) (HbMOF 1 ) utilizing ZnII center, a partially fluorinated, long-chain dicarboxylate ligand (hfipbba), and an amine-rich melamine (MA) co-ligand. Interestingly, the framework possesses two types of 1D channels decorated with CO2-philic (−NH2 and −CF3) groups that promote the highly selective CO2 adsorption by the framework, which was supported by computational simulations. Further, the synergistic involvement of both Lewis acidic and basic sites exposed in the confined 1D channels along with high thermal and chemical stability rendered HbMOF 1 a good heterogeneous catalyst for the highly efficient fixation of CO2 in a reaction with terminal/internal epoxides at mild conditions (RT and 1 bar CO2). Moreover, in-depth theoretical studies were carried out using periodic DFT to obtain the relative energies for each stage involved in the catalytic reaction and an insight mechanistic details of the reaction is presented. Overall, this work represents a rare demonstration of rational design of a porous ZnII MOF incorporating multiple functional sites suitable for highly efficient fixation of CO2 with terminal/internal epoxides at mild conditions supported by comprehensive theoretical studies.  相似文献   

9.
通过简单的离子热法,以四(4-氰基联苯基)硅烷作为四面体基块,将其与无水氯化锌在充满氩气气氛的手套箱中充分研磨后密封,分别以400和550 ℃的反应温度合成了新型多孔芳香骨架材料(PAF-51),得到PAF-51-1(400 ℃条件下)与PAF-51-2(550 ℃条件下)的比表面积分别为720和557 m2·g-1 (BET).与CH4和N2对比,该材料对CO2具有极好的选择性吸附能力. 273 K条件下,CO2/N2分离指数最高可达52.2,CO2/CH4分离指数也达到10.3,这一性质极有可能使得PAF-51成为捕获CO2理想材料,并对再生能源具有潜在的应用.  相似文献   

10.
Precise control of the micro‐/nanostructures of nanomaterials, such as hollow multi‐shelled structures (HoMSs), has shown its great advantages in various applications. Now, the crystal structure of building blocks of HoMSs are controlled by introducing the lattice distortion in HoMSs, for the first time. The lattice distortion located at the nanoscale interface of SnS2/SnO2 can provide additional active sites, which not only provide the catalytic activity under visible light but also improve the separation of photoexcited electron–hole pairs. Combined with the efficient light utilization, the natural advantage of HoMSs, a record catalytic activity was achieved in solid–gas system for CO2 reduction, with an excellent stability and 100 % CO selectivity without using any sensitizers or noble metals.  相似文献   

11.
Two enantiomorphic MgII‐based metal‐organic frameworks, {MgL(H2O)2}n ( 1‐D and 1‐L ) (where H2L=2,2′‐bipyridyl‐4,4′‐dicarboxylic acid) have been synthesized by solvothermal reaction without any chiral auxiliary. The single‐crystal X‐ray measurement and the structural analysis indicate that both 1‐D and 1‐L possess 2‐fold interpenetrated frameworks with different left‐ and right‐handed helical chains simultaneously, which serve as chiral source, thus transmitting chirality over the whole frameworks. The fluorescence measurements reveal that they exhibit a strong quenching response to nitrobenzene and could be potentially used as a chemical sensor. Owing to the accessible Lewis acidic sites in channels, they display high catalytic efficiency for cycloaddition reaction of CO2 with epoxides and could be reused five times without losing activity.  相似文献   

12.
The effect of water on CO2 hydrogenation to produce higher alcohols (C2–C4) was studied. Pt/Co3O4, which had not been used previously for this reaction, was applied as the heterogeneous catalyst. It was found that water and the catalyst had an excellent synergistic effect for promoting the reaction. High selectivity of C2–C4 alcohols could be achieved at 140 °C (especially with DMI (1,3‐dimethyl‐2‐imidazolidinone) as co‐solvent), which is a much lower temperature than reported previously. The catalyst could be reused at least five times without reducing the activity and selectivity. D2O and 13CH3OH labeling experiments indicated that water involved in the reaction and promoted the reaction kinetically, and ethanol was formed via CH3OH as an intermediate.  相似文献   

13.
Developing high-efficiency electromagnetic (EM) wave absorbing materials with light weight, thin thickness, and wide absorption bandwidth is highly desirable for ever-developing electronic and telecommunication devices. Herein, hierarchical metal–organic framework (MOF)-derived Co/C@V2O3 hollow spheres were designed and synthesized through a facile hydrothermal, precipitation, and pyrolysis method. The composite exhibits both excellent impedance matching and light weight due to the rational combination of hollow V2O3 spheres and porous Co/C. Additionally, multiple components enable a large dielectric and magnetic loss of the composite, giving rise to enhanced EM wave absorption performance with a maximum reflection loss (RL) of −40.1 dB and a broad effective absorption bandwidth (RL < −10 dB) of 4.64 GHz at a small thickness of 1.5 mm. This work provides insights into the design of hierarchical hollow and porous composites as thin and lightweight EM wave absorbers with efficient absorption, which can also be extended to energy storage, catalysis, and sensing.  相似文献   

14.
In the present research, the synthesis, spectroscopic characterization, and structural investigations of a unique ZnII complex of imine-functionalized polyhedral oligomeric silsesquioxane (POSS) is designed, and hereby described, as a catalyst for the synthesis of cyclic carbonates from epoxides and CO2. The uncommon features of the designed catalytic system is the elimination of the need for a high pressure of CO2 and the significant shortening of reaction times commonly associated with such difficult transformations like that of styrene oxide to styrene carbonate. Our studies have shown that imine-POSS is able to chelate metal ions like ZnII to form a unique coordination complex. The silsesquioxane core and the hindrance of the side arms (their steric effect) influence the construction process of the homoleptic Zn4@POSS-1 complex. The compound was characterized in solution by NMR (1H, 13C, 29Si), ESI-MS, UV/Vis spectroscopy and in the solid state by thermogravimetric/differential thermal analysis (TG-DTA), elemental analysis, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), cross-polarization magic angle spinning (CP MAS) NMR (13C, 29Si) spectroscopy, and X-ray crystallography.  相似文献   

15.
Clusters with an exact number of atoms are of particular interest in catalysis. Their catalytic behaviors can be potentially altered with the addition or removal of a single atom. Now the effects of doping with a single foreign atom (Au, Pd, and Pt) into the core of an Ag cluster with 25 atoms on the catalytic properties are explored, where the foreign atom is protected by 24 Ag atoms (Au@Ag24, Pd@Ag24, and Pt@Ag24). The central doping of a single atom into the Ag25 cluster has a substantial influence on the catalytic performance in the carboxylation reaction of CO2 with terminal alkyne through C?C bond formation to produce propiolic acid. These studies reveal that the catalytic properties of the cluster catalysts can be dramatically changed with the subtle alteration by a single atom away from the active sites.  相似文献   

16.
This study explores the kinetics, mechanism, and active sites of the CO2 electroreduction reaction (CO2RR) to syngas and hydrocarbons on a class of functionalized solid carbon‐based catalysts. Commercial carbon blacks were functionalized with nitrogen and Fe and/or Mn ions using pyrolysis and acid leaching. The resulting solid powder catalysts were found to be active and highly CO selective electrocatalysts in the electroreduction of CO2 to CO/H2 mixtures outperforming a low‐area polycrystalline gold benchmark. Unspecific with respect to the nature of the metal, CO production is believed to occur on nitrogen functionalities in competition with hydrogen evolution. Evidence is provided that sufficiently strong interaction between CO and the metal enables the protonation of CO and the formation of hydrocarbons. Our results highlight a promising new class of low‐cost, abundant electrocatalysts for synthetic fuel production from CO2.  相似文献   

17.
制备了一种含有联吡啶位点的共价有机骨架(COF)材料TpBpy,并通过配体上的联吡啶位点固载铜盐实现了功能化,得到的Cu@TpBpy具有大量的不饱和铜配位位点和高表面积,可用作苯硼酸与咪唑的Chan-Lam偶联反应的多相催化剂.通过优化溶剂、铜源、碱及反应时间等反应条件,发现使用质子极性溶剂MeOH时的反应产率最高,而Cu(OAc)2@Tp Bpy是效果最佳的催化剂,可溶性有机碱三乙胺(TEA)的促进效果最好.Cu(OAc)2@TpBpy在碱TEA的促进下于70℃催化咪唑与苯硼酸反应4 h后,得到目标产物1-苯基咪唑的最大产率为66%.在最优反应条件下进行了底物拓展,结果表明,取代基的位阻效应对催化体系影响显著,其中对位取代基的4-氯苯硼酸的产率最高(62%).  相似文献   

18.
Methanol synthesis by CO2 hydrogenation is attractive in view of avoiding the environmental implications associated with the production of the traditional syngas feedstock and mitigating global warming. However, there still is a lack of efficient catalysts for such alternative processes. Herein, we unveil the high activity, 100 % selectivity, and remarkable stability for 1000 h on stream of In2O3 supported on ZrO2 under industrially relevant conditions. This strongly contrasts to the benchmark Cu‐ZnO‐Al2O3 catalyst, which is unselective and experiences rapid deactivation. In‐depth characterization of the In2O3‐based materials points towards a mechanism rooted in the creation and annihilation of oxygen vacancies as active sites, whose amount can be modulated in situ by co‐feeding CO and boosted through electronic interactions with the zirconia carrier. These results constitute a promising basis for the design of a prospective technology for sustainable methanol production.  相似文献   

19.
《化学:亚洲杂志》2018,13(18):2677-2684
A new porphyrin‐based compound, [Zn3(C40H24N8)(C20H8N2O4)2(DEF)2](DEF)3 ( 1 ; DEF=N,N‐diethylformamide), has been synthesized by employing 5,10,15,20‐tetrakis(4‐pyridyl)porphyrin, 1,2‐diamino‐3,6‐bis(4‐carboxyphenyl)benzene, and Zn2+ salt at 100 °C under solvothermal conditions. The structure, as determined by single‐crystal XRD studies, is three‐dimensional with threefold interpenetration. The usefulness of free −NH2 groups in the ligand was exploited for anchoring silver nanoparticles through a simple solution‐based route. The silver‐loaded sample, Ag@ 1 , was characterized by powder XRD, energy‐dispersive X‐ray spectroscopy, high‐resolution TEM, SEM, X‐ray photoelectron spectroscopy, and inductively coupled plasma MS analysis, which clearly indicated that silver nanoparticles with a size of 3.83 nm were uniformly distributed within the metal–organic framework (MOF). The Ag@ 1 sample was evaluated for possible catalytic activity for the carboxylation of a terminal alkyne by employing CO2 under atmospheric pressure; this gave excellent results. The Ag@ 1 catalyst was found to be robust, active, and recyclable. The present studies suggest that porphyrin MOFs not only exhibit interesting structures, but also show good heterogeneous catalytic activity towards the fixation of CO2.  相似文献   

20.
Ultrathin two-dimensional metal–organic framework nanosheets have emerged as a promising kind of heterogeneous catalysts. Herein, we report a series of 2D porphyrinic metal–organic framework nanosheets (X-PMOF, X=F, Cl, Br), which was prepared from the self-assembly of a halogen-based porphyrin ligand X-TCPP (X-TCPP=5-(4-halogenatedphenyl)-10,15,20-tris(4-carboxyphenyl)-porphyrin) and ZrCl4 in the presence of trifluoroacetic acid as the modulating reagent. The framework of X-PMOF possessed the ftw topology as in MOF-525. The lamellar X-PMOF nanosheets with the thickness of down to 4.5 nm were assembled and aggregated into a flower-like morphology. With the introduction of iridium(III) atoms into the porphyrin rings, the resultant X-PMOF(Ir) nanosheets were prepared by a similar method. Catalytic results show that Br-PMOF(Ir) nanosheets were efficient for CO2 reduction and aminolysis, giving rise to formamides in high yields under room temperature and atmospheric pressure, and can be recycled and reused for 3 runs. The total turnover number of Br-PMOF(Ir) after 3 runs was 1644 based on Ir. Mechanistic studies disclose that the high efficiency of Br-PMOF(Ir) nanosheets was ascribed to three factors, including the superior activation capability of iridium(III) porphyrin for Si−H bonds, more active sites on the external surfaces of Br-PMOF(Ir) nanosheets, and the defects caused by unsymmetrical porphyrin ligand that increased the framework's affinity towards CO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号