首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electroporation is a promising method to inactivate cells and it has wide applications in medical science, biology and environmental health. Here, we investigate the bacteria inactivation performance of two different microfluidic electroporation devices with rhombus and circular micropillars used for generating locally enhanced electric field strength. Experiments are carried out to characterize the inactivation performance (i.e., the log removal efficiency) of two types of bacteria: Escherichia coli (E. coli, gram-negative) and Enterococcus faecalis (E. faecalis, gram-positive) in these two microfluidic devices. We find that under the same applied electric field, the device with rhombus micropillars performs better than the device with circular micropillars for both E. coli and E. faecalis. Numerical simulations show that due to the corner-induced singularity effect, the maximum electric field enhancement is higher in the device with rhombus micropillars than that in the device with circular micropillars. We also study the effects of DC and AC electric fields and flowrate. Our experiments demonstrate that the use of the DC field achieves higher log removal efficiencies than the use of AC field.  相似文献   

2.
A microfluidic device was designed and fabricated to capture single microparticles and cells by using hydrodynamic force and selectively release the microparticles and cells of interest via negative dielectrophoresis by activating selected individual microelectrodes. The trap microstructure was optimized based on numerical simulation of the electric field as well as the flow field. The capture and selective release functions of the device were verified by multi-types microparticles with different diameters and K562 cells. The capture efficiencies/release efficiencies were 95.55% ± 0.43%/96.41% ± 1.08% and 91.34% ± 0.01%/93.67% ± 0.36% for microparticles and cells, respectively. By including more traps and microelectrodes, the device can achieve high throughput and realize the visual separation of microparticles/cells of interest in a large number of particle/cell groups.  相似文献   

3.
With a given free‐flow electrophoresis device, reasonable conditions (electric field strength, carrier buffer conductivity, and flow rate) are crucial for an optimized separation. However, there has been no experimental study on how to choose reasonable general conditions for a free‐flow electrophoresis device with a thermoelectric cooler in view of Joule heat generation. Herein, comparative experiments were carried out to propose the selection procedure of general conditions in this study. The experimental results demonstrated that appropriate conditions were (i) <67 V/cm electric field strength; (ii) lower than 1.3 mS/cm carrier buffer conductivity (Tris‐HCl: 20 mM Tris was titrated by HCl to pH 8.0); and (iii) higher than 3.6 mL/min carrier buffer flow rate. Furthermore, under inappropriate conditions (e.g. 400 V voltage and 40 mM Tris‐HCl carrier buffer), the free‐flow electrophoresis separation would be destroyed by bubbles caused by more Joule heating. Additionally, a series of applications under the appropriate conditions were performed with samples of model dyes, proteins (bovine serum albumin, myoglobin, and cytochrome c), and cells (Escherichia coli, Streptococcus thermophilus, and Saccharomyces cerevisiae). The separation results showed that under the appropriate conditions, separation efficiency was obviously better than that in the previous experiments with randomly or empirically selected conditions.  相似文献   

4.
We developed an insulator‐based dielectrophoretic (iDEP) creek‐gap device that enables the isomotive movement of cells and that is suitable for determining their DEP properties. In the iDEP creek‐gap device, a pair of planar insulators forming a single fan‐shaped channel allows the induction of the isomotive iDEP force on cells. Hence, the cells’ behavior is characterized by straight motion at constant velocity in the longitudinal direction of the channel. Operation of the device was demonstrated using human breast epithelial cells (MCF10A) by applying an AC voltage of Vpp = 34 V peak‐to‐peak and frequencies of 200 kHz and 50 MHz to the device. Subsequently, the magnitude of DEP forces and the real part of the ClausiusMossotti (CM) factor, Re(β), were deduced from the measured cell velocity. The values of Re(β) were 0.14 ± 0.01 for the frequency of 200 kHz and ?0.12 ± 0.01 for 50 MHz. These results demonstrated that the DEP properties of the cells could be extracted over a wide field frequency range. Therefore, the proposed iDEP creek‐gap device was found to be applicable to cell analysis.  相似文献   

5.
Liu YJ  Guo SS  Zhang ZL  Huang WH  Baigl D  Xie M  Chen Y  Pang DW 《Electrophoresis》2007,28(24):4713-4722
An integrated smart microfluidic device consisting of nickel micropillars, microvalves, and microchannels was developed for specific capture and sorting of cells. A regular hexagonal array of nickel micropillars was integrated on the bottom of a microchannel by standard photolithography, which can generate strong induced magnetic field gradients under an external magnetic field to efficiently trap superparamagnetic beads (SPMBs) in a flowing stream, forming a bed with sufficient magnetic beads as a capture zone. Fluids could be manipulated by programmed controlling the integrated air-pressure-actuated microvalves, based on which in situ bio-functionalization of SPMBs trapped in the capture zone was realized by covalent attachment of specific proteins directly to their surface on the integrated microfluidic device. In this case, only small volumes of protein solutions (62.5 nL in the capture zone; 375 nL in total volume needed to fill the device from inlet A to the intersection of outlet channels F and G) can meet the need for protein! The newly designed microfluidic device reduced greatly chemical and biological reagent consumption and simplified drastically tedious manual handling. Based on the specific interaction between wheat germ agglutinin (WGA) and N-acetylglucosamine on the cell membrane, A549 cancer cells were effectively captured and sorted on the microfluidic device. Capture efficiency ranged from 62 to 74%. The integrated microfluidic device provides a reliable technique for cell sorting.  相似文献   

6.
We report a microfluidic paper based analytical device implementing ion concentration polarization (ICP) for rapid pre-concentration of Escherichia coli in water. The fabricated device consists of a paper channel with a Nafion® membrane and in-built micro wire electrodes to supply electric voltage to induce the ICP effect. E. coli cells were stained with SYTO 9 and fluorescence was used as a sensing method. The device achieved high concentration factor up to 2 × 105 within minutes. The effect of total ion concentration, on ICP and fluorescence intensity was studied. The reported device and method are suitable and effective for detection of E. coli during ballast water quality monitoring, coastal water quality monitoring where high salinity water is present.  相似文献   

7.
This article describes a dielectrophoresis (DEP)-based simulation and experimental study of human epidermal keratinocyte (HEK) cells for wounded skin cell migration toward rapid epithelialization. MyDEP is a standalone software designed specifically to study dielectric particles and cell response to an alternating current (AC) electric field. This method demonstrated that negative dielectrophoresis (NDEP) occurs in HEK cells at a wide frequency range in highly conductive medium. The finite element method was used to characterize particle trajectory based on DEP and drag force. The performance of the system was assessed using HEK cells in a highly conductive EpiLife suspending medium. The DEP experiment was performed by applying sinusoidal wave AC potential at the peak-to-peak voltage of 10 V in a tapered aluminum microelectrode array from 100 kHz to 1 MHz. We experimentally observed the occurrence of NDEP, which attracted HEK cells toward the local electric field minima in the region of interest. The DIPP-MotionV software was used to track cell migration in the prerecorded video via an automatic marker and estimate the average speed and acceleration of the cells. The results showed that HEK cell migration was accomplished approximately at 6.43 μm/s at 100 kHz with 10 V, and FDEP caused the cells to migrate and align at the target position, which resulted in faster wound closures because of the application of an electric field frequency to HEK cells in random locations.  相似文献   

8.
A passive microfluidic device is reported for continuous microparticle enrichment. The microparticle is enriched based on the inertial effect in a microchannel with contracting‐expanding structures on one side where microparticles/cells are subjected to the inertial lift force and the momentum‐change‐induced inertial force induced by highly curved streamlines. Under the combined effect of the two forces, yeast cells and microparticles of different sizes were continuously focused in the present device over a range of Reynolds numbers from 16.7 to 125. ~68% of the particle‐free liquid was separated from the sample at Re = 66.7, and ~18 μL particle‐free liquid was fast obtained within 10 s. Results also showed that the geometry of the contracting‐expanding structure significantly influenced the lateral migration of the particle. Structures with a large angle induced strong inertial effect and weak disturbance effect of vortex on the particle, both of which enhanced the microparticle enrichment in microchannel. With simple structure, small footprint (18 × 0.35 mm), easy operation and cell‐friendly property, the present device has great potential in biomedical applications, such as the enrichment of cells and the fast extraction of plasma from blood for disease diagnose and therapy.  相似文献   

9.
The ability to accurately control fluid transport in microfluidic devices is key for developing high‐throughput methods for single cell analysis. Making small, reproducible changes to flow rates, however, to optimize lysis and injection using pumps external to the microfluidic device are challenging and time‐consuming. To improve the throughput and increase the number of cells analyzed, we have integrated previously reported micropumps into a microfluidic device that can increase the cell analysis rate to ∼1000 cells/h and operate for over an hour continuously. In order to increase the flow rates sufficiently to handle cells at a higher throughput, three sets of pumps were multiplexed. These pumps are simple, low‐cost, durable, easy to fabricate, and biocompatible. They provide precise control of the flow rate up to 9.2 nL/s. These devices were used to automatically transport, lyse, and electrophoretically separate T‐Lymphocyte cells loaded with Oregon green and 6‐carboxyfluorescein. Peak overlap statistics predicted the number of fully resolved single‐cell electropherograms seen. In addition, there was no change in the average fluorescent dye peak areas indicating that the cells remained intact and the dyes did not leak out of the cells over the 1 h analysis time. The cell lysate peak area distribution followed that expected of an asynchronous steady‐state population of immortalized cells.  相似文献   

10.
This work investigated the inactivation of Microcystis aeruginosa (MA) with contact glow discharge electrolysis (CGDE). The influences of applied voltage, current and treatment time on the inactivation rate were critically examined. Based on the above results, the optimal conditions were chosen to sufficiently utilize chemically active species and enhance the inactivation of MA. Under the optimal conditions (voltage: 530 V; current: 30 mA; treatment time: 20 min), the inactivation rate of algae was more than 90% within 5 days incubation after inoculating. At the same time, the concentrations of Chlorophyll-a and dehydrogenase decreased, which demonstrated that 20 min CGDE treatment could effectively inhibit the growth of MA and caused deterioration of cell integrity. The present work would provide strong evidence to support the utilization of CGDE on the inactivation of MA in aqueous solution.  相似文献   

11.
Continuous analysis of two dyes loaded into single mammalian cells using laser-based lysis combined with electrophoretic separation was developed and characterized on microfluidic chips. The devices employed hydrodynamic flow to transport cells to a junction where they were mechanically lysed by a laser-generated cavitation bubble. An electric field then attracted the analyte into a separation channel while the membranous remnants passed through the intersection towards a waste reservoir. Phosphatidylcholine (PC)-supported bilayer membrane coatings (SBMs) provided a weakly negatively charged surface and prevented cell fouling from interfering with device performance. Cell lysis using a picosecond-pulsed laser on-chip did not interfere with concurrent electrophoretic separations. The effect of device parameters on performance was evaluated. A ratio of 2 : 1 was found to be optimal for the focusing-channel : flow-channel width and 3 : 1 for the flow-channel : separation-channel width. Migration times decreased with increased electric field strengths up to 333 V cm(-1), at which point the field strength was sufficient to move unlysed cells and cellular debris into the electrophoretic channel. The migration time and full width half-maximum (FWHM) of the peaks were independent of cell velocity for velocities between 0.03 and 0.3 mm s(-1). Separation performance was independent of the exact lysis location when lysis was performed near the outlet of the focusing channel. The migration time for cell-derived fluorescein and fluorescein carboxylate was reproducible with <10% RSD. Automated cell detection and lysis were required to reduce peak FWHM variability to 30% RSD. A maximum throughput of 30 cells min(-1) was achieved. Device stability was demonstrated by analyzing 600 single cells over a 2 h time span.  相似文献   

12.
This paper presents the development and experimental analysis of a curved microelectrode platform for the DEP deformation of breast cancer cells (MDA‐MB‐231). The platform is composed of arrays of curved DEP microelectrodes which are patterned onto a glass slide and samples containing MDA‐MB‐231 cells are pipetted onto the platform's surface. Finite element method is utilised to characterise the electric field gradient and DEP field. The performance of the system is assessed with MDA‐MB‐231 cells in a low conductivity 1% DMEM suspending medium. We applied sinusoidal wave AC potential at peak to peak voltages of 2, 5, and 10 Vpp at both 10 kHz and 50 MHz. We observed cell blebbing and cell shrinkage and analyzed the percentage of shrinkage of the cells. The experiments demonstrated higher percentage of cell shrinkage when cells are exposed to higher frequency and peak to peak voltage electric field.  相似文献   

13.
Microporous divinyl benzene copolymer (MDBP) was used for the first time as immobilization material for Saccharomyces cerevisiae ATCC 26602 cells in a bed reactor and ethanol production from glucose was studied as a model system. A very homogenous thick layer of yeast cells were seen from the scanning electron micrographs on the outer walls of biopolymer. The dried weight of the cells was found to be approximately 2 g per gram of cell supporting material. Hydrophobic nature of polymer is an important factor increasing cell adhesion on polymer pieces. The dynamic flow conditions through the biomaterial due to its microporous architecture prevented exopolysaccharide matrix formation around cells and continuous washing out of toxic metabolites and dead and degraded cells from the reactor provided less diffusional limitations and dynamic living environment to the cells. In order to see the ethanol production performance of immobilized yeast cells, a large initial concentration range of glucose between 6.7 and 300 g/l was studied at 1 ml/min in continuous packed-bed reactor. The inhibition effect of glucose with increasing initial concentration was observed at above 150 g/l, a relatively high substrate concentration. The continuous fluid flow around the microenvironment of the attached cells and mass transferring ability of cell immobilized on MDBP can help in decreasing the inhibition effect of ethanol accumulation and high substrate concentration in the vicinity of the cells.  相似文献   

14.
Hargis AD  Alarie JP  Ramsey JM 《Electrophoresis》2011,32(22):3172-3179
A microfluidic device capable of rapidly analyzing cells in a high-throughput manner using electrical cell lysis is further characterized. In the experiments performed, cell lysis events were studied using an electron multiplying charge coupled device camera with high frame rate (>100 fps) data collection. It was found that, with this microfluidic design, the path that a cell follows through the electric field affects the amount of lysate injected into the analysis channel. Elimination of variable flow paths through the electric field was achieved by coating the analysis channel with a polyamine compound to reverse the electroosmotic flow (EOF). EOF reversal forced the cells to take the same path through the electric field. The improved control of the cell trajectory will reduce device-imposed bias on the analysis and maximizes the amount of lysate injected into the analysis channel for each cell, resulting in improved analyte detection capabilities.  相似文献   

15.
Insulator‐based dielectrophoresis (iDEP) is a well‐known technique that harnesses electric fields for separating, moving, and trapping biological particle samples. Recent work has shown that utilizing DC‐biased AC electric fields can enhance the performance of iDEP devices. In this study, an iDEP device with 3D varying insulating structures analyzed in combination with DC biased AC fields is presented for the first time. Using our unique reactive ion etch lag, the mold for the 3D microfluidic chip is created with a photolithographic mask. The 3D iDEP devices, whose largest dimensions are 1 cm long, 0.18 cm wide, and 90 μm deep are then rapidly fabricated by curing a PDMS polymer in the glass mold. The 3D nature of the insulating microstructures allows for high trapping efficiency at potentials as low as 200 Vpp. In this work, separation of Escherichia coli from 1 μm beads and selective trapping of live Staphylococcus aureus cells from dead S. aureus cells is demonstrated. This is the first reported use of DC‐biased AC fields to selectively trap bacteria in 3D iDEP microfluidic device and to efficiently separate particles where selectivity of DC iDEP is limited.  相似文献   

16.
A three-layer microfluidic device was developed that combined perfusion of cultured cells with on-line chemical analysis for near real-time monitoring of cellular secretions. Two layers were reversibly sealed to form a cell chamber that allowed cells grown on coverslips to be loaded directly into the chip. The outlet of the chamber was in fluidic contact with a third layer that was permanently bonded. Perfusate from the cell chamber flowed into this third layer where a fluorescence enzyme assay for non-esterified fatty acid (NEFA) was performed on-line. The device was used to monitor efflux of NEFAs from ∼6,200 cultured adipocytes with 83 s temporal resolution. Perfusion of murine 3T3-L1 cultured adipocytes resulted in an average basal concentration of 24.2 ± 2.4 μM NEFA (SEM, n = 6) detected in the effluent corresponding to 3.31 × 10−5 nmol cell−1 min−1. Upon pharmacological treatment with a β-adrenergic agonist to stimulate lipolysis, a 6.9 ± 0.7-fold (SEM, n = 6) sustained increase in NEFA secretion was observed. This multilayer device provides a versatile platform that could be adapted for use with other cell types to study corresponding cellular secretions in near real-time.  相似文献   

17.
We developed the dual‐micropillar‐based microfluidic platform to direct embryonic stem (ES) cell fate. 4 × 4 dual‐micropillar‐based microfluidic platform consisted of 16 circular‐shaped outer micropillars and 8 saddle‐shaped inner micropillars in which single ES cells were cultured. We hypothesized that dual‐micropillar arrays would play an important role in controlling the shear stress and cell docking. Circular‐shaped outer micropillars minimized the shear stress, whereas saddle‐shaped inner micropillars allowed for docking of individual ES cells. We observed the effect of saddle‐shaped inner micropillars on cell docking in response to hydrodynamic resistance. We also demonstrated that ES cells cultured for 6 days within the dual‐micropillar‐based microfluidic platform differentiated into neural‐like cells. Therefore, this dual‐micropillar‐based microfluidic platform could be a potentially powerful method for screening of lineage commitments of single ES cells.  相似文献   

18.
Kimura S  Fukuda J  Tajima A  Suzuki H 《Lab on a chip》2012,12(7):1309-1315
Subclinical mastitis is a common infectious disease affecting dairy cows. To develop an early diagnostic device for this disease, we focused on measuring an increase in the number of neutrophils in raw milk of mastitic cows. Superoxide anions (O(2)(-)), secreted by neutrophils, can be a good indicator of neutrophil concentration, and therefore, the seriousness of the mastitis. In this study, neutrophils in raw milk samples were separated from fat globules in a flow channel using differences in specific gravity and specific adhesion of neutrophils to P-selectin. Neutrophils trapped in the flow channel were subsequently concentrated in an array of micropillars of a working electrode modified with P-selectin and superoxide dismutase. The O(2)(-) secreted from the trapped neutrophils was electrochemically detected. A difference in the detection current was observed between normal and mastitic milk samples. A clear linear relationship between the electric current and cell density was observed.  相似文献   

19.
Micro free flow electrophoresis (µFFE) is a valuable technique capable of high throughput rapid microscale electrophoretic separation along with mild operating conditions. However, the stream flow separation nature of free flow electrophoresis affects its separation performance with additional stream broadening due to sample stream deflection. To reduce stream broadening and enhance separation performance of µFFE, we presented a simple microfluidic device that enables injection bandwidth control. A pinched injection was formed in the reported µFFE system using operating buffer at sample flow rate ratio (r) setting. Initial bandwidth at the entrance of separation chamber can be shrunk from 800 to 30 µm when r increased from 1 to 256. Stream broadening at the exit of separation chamber can be reduced by about 96% when r increased from 4 to 128, according to both theoretical and experimental results. Moreover, the separation resolution for a dye mixture was enhanced by a factor of 4 when r increased from 16 to 128, which corresponded to an 80% reduction in sample initial bandwidth. Furthermore, a similar enhancement on amino acids separation was obtained by using injection control in the reported µFFE device and readily integrated into online/offline sample preparation and/or downstream analysis procedures.  相似文献   

20.
Point-of-care diagnostics requires a smart separation of particles and/or cells. In this work, the multiorifice fluid fractionation as a passive method and dielectrophoresis-based actuator as an active tool are combined to offer a new device for size-based particle separation. The main objective of the combination of these two well-established techniques is to improve the performance of the multiorifice fluid fractionation by taking advantage of dielectrophoresis-based actuator for separating particles. Initially, by using numerical simulations, the effect of using dielectrophoresis-based actuator in multiorifice fluid fractionation on the separation of particles was investigated, and the size of the device was optimized by 25% compared to a device without dielectrophoresis-based actuator. Also, adding dielectrophoresis-based actuator to multiorifice fluid fractionation can extend the range of flow rates needed for separation. In the absence of dielectrophoresis-based actuator, the separation took place only when the flow rate is 100 μL/min, in the presence of dielectrophoresis-based actuator (20 Vp-p), the separation happened in flow rates ranging from 70 to 120 μL/min.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号