首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Stibinyl and bismuthinyl radicals are recognized as representative intermediates of antimony and bismuth compounds, but still elusive in the condensed phase. We successfully synthesized persistent stibinyl and bismuthinyl radicals in solution by facile dissociation of the corresponding dimers with bulky substituents. We characterized the radicals by NMR and UV/Vis spectroscopy and estimated the thermodynamic parameters for the dissociation equilibria. The radicals show n→p (HOMO→SOMO) transition bands at 497 nm (stibinyl) and 543 nm (bismuthinyl) in 3‐methylpentane and react with a stable nitroxyl radical to give the cross‐radical coupling products in good yields.  相似文献   

2.
3.
Sodium‐ion batteries are important alternative energy storage devices that have recently come again into focus for the development of large‐scale energy storage devices because sodium is an abundant and low‐cost material. However, the development of electrode materials with long‐term stability has remained a great challenge. A novel negative‐electrode material, a P2‐type layered oxide with the chemical composition Na2/3Co1/3Ti2/3O2, exhibits outstanding cycle stability (ca. 84.84 % capacity retention for 3000 cycles, very small decrease in the volume (0.046 %) after 500 cycles), good rate capability (ca. 41 % capacity retention at a discharge/charge rate of 10 C), and a usable reversible capacity of about 90 mAh g?1 with a safe average storage voltage of approximately 0.7 V in the sodium half‐cell. This P2‐type layered oxide is a promising anode material for sodium‐ion batteries with a long cycle life and should greatly promote the development of room‐temperature sodium‐ion batteries.  相似文献   

4.
《化学:亚洲杂志》2017,12(1):116-121
Antimony/porous biomass carbon nanocomposites have been prepared by a chemical reduction method and applied as anodes for sodium‐ion batteries. The porous biomass carbon derived from a black fungus had a large Brunauer–Emmett–Teller (BET) surface area of 2233 m2 g−1 in which antimony nanoparticles were uniformly distributed in the porous carbon. The as‐prepared antimony/porous biomass carbon nanocomposites exhibited a high reversible sodium storage capacity of 567 mA h g−1 at a current density of 100 mA g−1, extended cycling stability, and good rate capability.  相似文献   

5.
All‐solid‐state sodium‐ion batteries that operate at room temperature are attractive candidates for use in large‐scale energy storage systems. However, materials innovation in solid electrolytes is imperative to fulfill multiple requirements, including high conductivity, functional synthesis protocols for achieving intimate ionic contact with active materials, and air stability. A new, highly conductive (1.1 mS cm?1 at 25 °C, Ea=0.20 eV) and dry air stable sodium superionic conductor, tetragonal Na3SbS4, is described. Importantly, Na3SbS4 can be prepared by scalable solution processes using methanol or water, and it exhibits high conductivities of 0.1–0.3 mS cm?1. The solution‐processed, highly conductive solidified Na3SbS4 electrolyte coated on an active material (NaCrO2) demonstrates dramatically improved electrochemical performance in all‐solid‐state batteries.  相似文献   

6.
《化学:亚洲杂志》2018,13(19):2770-2780
Owing to resource abundance, and hence, a reduction in cost, wider global distribution, environmental benignity, and sustainability, sodium‐based, rechargeable batteries are believed to be the most feasible and enthralling energy‐storage devices. Accordingly, they have recently attracted attention from both the scientific and industrial communities. However, to compete with and exceed dominating lithium‐ion technologies, breakthrough research is urgently needed. Among all non‐electrode components of the sodium‐based battery system, the electrolyte is considered to be the most critical element, and its tailored design and formulation is of top priority. The incorporation of a small dose of foreign molecules, called additives, brings vast, salient benefits to the electrolytes. Thus, this review presents progress in electrolyte additives for room‐temperature, sodium‐based, rechargeable batteries, by enlisting sodium‐ion, Na−O2/air, Na−S, and sodium‐intercalated cathode type‐based batteries.  相似文献   

7.
Sodium‐ion energy storage, including sodium‐ion batteries (NIBs) and electrochemical capacitive storage (NICs), is considered as a promising alternative to lithium‐ion energy storage. It is an intriguing prospect, especially for large‐scale applications, owing to its low cost and abundance. MoS2 sodiation/desodiation with Na ions is based on the conversion reaction, which is not only able to deliver higher capacity than the intercalation reaction, but can also be applied in capacitive storage owing to its typically sloping charge/discharge curves. Here, NIBs and NICs based on a graphene composite (MoS2/G) were constructed. The enlarged d‐spacing, a contribution of the graphene matrix, and the unique properties of the MoS2/G substantially optimize Na storage behavior, by accommodating large volume changes and facilitating fast ion diffusion. MoS2/G exhibits a stable capacity of approximately 350 mAh g?1 over 200 cycles at 0.25 C in half cells, and delivers a capacitance of 50 F g?1 over 2000 cycles at 1.5 C in pseudocapacitors with a wide voltage window of 0.1–2.5 V.  相似文献   

8.
Although being the standard anode material in lithium‐ion batteries (LIBs), graphite so far is considered to fail application in sodium‐ion batteries (NIBs) because the Na‐C system lacks suitable binary intercalation compounds. Here we show that this limitation can be circumvented by using co‐intercalation phenomena in a diglyme‐based electrolyte. The resulting compound is a stage‐I ternary intercalation compound with an estimated stoichiometry of Na(diglyme)2C20. Highlights of the electrode reaction are its high energy efficiency, the small irreversible loss during the first cycle, and a superior cycle life with capacities close to 100 mAh g?1 for 1000 cycles and coulomb efficiencies >99.87 %. A one‐to‐one comparison with the analogue lithium‐based cell shows that the sodium‐based system performs better and also withstands higher currents.  相似文献   

9.
Increasing demand for sodium‐ion batteries (SIBs), one of the most feasible alternatives to lithium ion batteries (LIBs), has resulted because of their high energy density, low cost, and excellent cycling stability. Consequently, the design and fabrication of suitable electrode materials that govern the overall performance of SIBs are important. Aerosol‐assisted spray processes have gained recent prominence as feasible, scalable, and cost‐effective methods for preparing electrode materials. Herein, recent advances in aerosol‐assisted spray processes for the fabrication of nanostructured metal chalcogenides (e.g., metal sulfides, selenides, and tellurides) for SIBs, with a focus on improving the electrochemical performance of metal chalcogenides, are summarized. Finally, the improvements, limitations, and direction of future research into aerosol‐assisted spray processes for the fabrication of various electrode materials are presented.  相似文献   

10.
It is challenging to prepare phase‐pure FeOF by wet‐chemical methods. Furthermore, nanostructured FeOF has never been reported. In this study, hierarchical FeOF nanorods were synthesized through a facile, one‐step, wet‐chemical method by the use of just FeF3?3H2O and an alcohol. It was possible to significantly control the FeOF nanostructure by the selection of alcohols with an appropriate molecular structure. A mechanism for the formation of the nanorods is proposed. An impressive high specific capacity of approximately 250 mAh g?1 and excellent cycling and rate performances were demonstrated for sodium storage. The hierarchical FeOF nanorods are promising high‐capacity cathodes for SIBs.  相似文献   

11.
Developing organic compounds with multifunctional groups to be used as electrode materials for rechargeable sodium‐ion batteries is very important. The organic tetrasodium salt of 2,5‐dihydroxyterephthalic acid (Na4DHTPA; Na4C8H2O6), which was prepared through a green one‐pot method, was investigated at potential windows of 1.6–2.8 V as the positive electrode or 0.1–1.8 V as the negative electrode (vs. Na+/Na), each delivering compatible and stable capacities of ca. 180 mAh g?1 with excellent cycling. A combination of electrochemical, spectroscopic and computational studies revealed that reversible uptake/removal of two Na+ ions is associated with the enolate groups at 1.6–2.8 V (Na2C8H2O6/Na4C8H2O6) and the carboxylate groups at 0.1–1.8 V (Na4C8H2O6/Na6C8H2O6). The use of Na4C8H2O6 as the initial active materials for both electrodes provided the first example of all‐organic rocking‐chair SIBs with an average operation voltage of 1.8 V and a practical energy density of about 65 Wh kg?1.  相似文献   

12.
P2‐type layered oxides suffer from an ordered Na+/vacancy arrangement and P2→O2/OP4 phase transitions, leading them to exhibit multiple voltage plateaus upon Na+ extraction/insertion. The deficient sodium in the P2‐type cathode easily induces the bad structural stability at deep desodiation states and limited reversible capacity during Na+ de/insertion. These drawbacks cause poor rate capability and fast capacity decay in most P2‐type layered oxides. To address these challenges, a novel high sodium content (0.85) and plateau‐free P2‐type cathode‐Na0.85Li0.12Ni0.22Mn0.66O2 (P2‐NLNMO) was developed. The complete solid‐solution reaction over a wide voltage range ensures both fast Na+ mobility (10?11 to 10?10 cm2 s?1) and small volume variation (1.7 %). The high sodium content P2‐NLNMO exhibits a higher reversible capacity of 123.4 mA h g?1, superior rate capability of 79.3 mA h g?1 at 20 C, and 85.4 % capacity retention after 500 cycles at 5 C. The sufficient Na and complete solid‐solution reaction are critical to realizing high‐performance P2‐type cathodes for sodium‐ion batteries.  相似文献   

13.
Polydopamine (PDA), which is biodegradable and is derived from naturally occurring products, can be employed as an electrode material, wherein controllable partial oxidization plays a key role in balancing the proportion of redox‐active carbonyl groups and the structural stability and conductivity. Unexpectedly, the optimized PDA derivative endows lithium‐ion batteries (LIBs) or sodium‐ion batteries (SIBs) with superior electrochemical performances, including high capacities (1818 mAh g?1 for LIBs and 500 mAh g?1 for SIBs) and good stable cyclabilities (93 % capacity retention after 580 cycles for LIBs; 100 % capacity retention after 1024 cycles for SIBs), which are much better than those of their counterparts with conventional binders.  相似文献   

14.
The redox entity comprising two Schiff base groups attached to a phenyl ring (? N?CH? Ar? HC?N? ) is reported to be active for sodium‐ion storage (Ar=aromatic group). Electroactive polymeric Schiff bases were produced by reaction between non‐conjugated aliphatic or conjugated aromatic diamine block with terephthalaldehyde unit. Crystalline polymeric Schiff bases are able to electrochemically store more than one sodium atom per azomethine group at potentials between 0 and 1.5 V versus Na+/Na. The redox potential can be tuned through conjugation of the polymeric chain and by electron injection from donor substituents in the aromatic rings. Reversible capacities of up to 350 mA h g?1 are achieved when the carbon mixture is optimized with Ketjen Black. Interestingly, the “reverse” configuration (? CH?N? Ar? N?HC? ) is not electrochemically active, though isoelectronic.  相似文献   

15.
Silver molybdate, Ag2Mo2O7, has been prepared by a conventional solid‐state reaction. Its electrochemical properties as an anode material for sodium‐ion batteries (SIBs) have been comprehensively examined by means of galvanostatic charge–discharge cycling, cyclic voltammetry, and rate performance measurements. At operating voltages between 3.0 and 0.01 V, the electrode delivered a reversible capacity of nearly 190 mA h g?1 at a current density of 20 mA g?1 after 70 cycles. Ag2Mo2O7 also demonstrated a good rate capability and long‐term cycle stability, the capacity reaching almost 100 mA h g?1 at a current density of 500 mA g?1, with a capacity retention of 55 % over 1000 cycles. Moreover, the sodium storage process of Ag2Mo2O7 has been investigated by means of ex situ XRD, Raman spectroscopy, and HRTEM. Interestingly, the anode decomposes into Ag metal and Na2MoO4 during the initial discharge process, and then Na+ ions are considered to be inserted into/extracted from the Na2MoO4 lattice in the subsequent cycles governed by an intercalation/deintercalation mechanism. Ex situ HRTEM images revealed that Ag metal not only remains unchanged during the sodiation/desodiation processes, but is well dispersed throughout the amorphous matrix, thereby greatly improving the electronic conductivity of the working electrode. The “in situ” decomposition behavior of Ag2Mo2O7 is distinct from that of chemically synthesized, metal‐nanoparticle‐coated electrode materials, and provides strong supplementary insight into the mechanism of such new anode materials for SIBs and may set a precedent for the design of further materials.  相似文献   

16.
We report the synthesis and anode application for sodium‐ion batteries (SIBs) of WS2 nanowires (WS2 NWs). WS2 NWs with very thin diameter of ≈25 nm and expanded interlayer spacing of 0.83 nm were prepared by using a facile solvothermal method followed by a heat treatment. The as‐prepared WS2 NWs were evaluated as anode materials of SIBs in two potential windows of 0.01–2.5 V and 0.5–3 V. WS2 NWs displayed a remarkable capacity (605.3 mA h g?1 at 100 mA g?1) but with irreversible conversion reaction in the potential window of 0.01–2.5 V. In comparison, WS2 NWs showed a reversible intercalation mechanism in the potential window of 0.5–3 V, in which the nanowire‐framework is well maintained. In the latter case, the interlayers of WS2 are gradually expanded and exfoliated during repeated charge–discharge cycling. This not only provides more active sites and open channels for the intercalation of Na+ but also facilitates the electronic and ionic diffusion. Therefore, WS2 NWs exhibited an ultra‐long cycle life with high capacity and rate capability in the potential window of 0.5–3 V. This study shows that WS2 NWs are promising as the anode materials of room‐temperature SIBs.  相似文献   

17.
Na‐ion batteries have been attracting intensive investigations as a possible alternative to Li‐ion batteries. Herein, we report the synthesis of SnS2 nanoplatelet@graphene nanocomposites by using a morphology‐controlled hydrothermal method. The as‐prepared SnS2/graphene nanocomposites present a unique two‐dimensional platelet‐on‐sheet nanoarchitecture, which has been identified by scanning and transmission electron microscopy. When applied as the anode material for Na‐ion batteries, the SnS2/graphene nanosheets achieved a high reversible specific sodium‐ion storage capacity of 725 mA h g?1, stable cyclability, and an enhanced high‐rate capability. The improved electrochemical performance for reversible sodium‐ion storage could be ascribed to the synergistic effects of the SnS2 nanoplatelet/graphene nanosheets as an integrated hybrid nanoarchitecture, in which the graphene nanosheets provide electronic conductivity and cushion for the active SnS2 nanoplatelets during Na‐ion insertion and extraction processes.  相似文献   

18.
The synthesis of phosphane‐ene photopolymer networks, where the networks are composed of crosslinked tertiary alkyl phosphines are reported. Taking advantage of the rich coordination chemistry of alkyl phosphines, stibino‐phosphonium and stibino‐bis(phosphonium) functionalized polymer networks could be generated. Small‐molecule stibino‐phosphonium and stibino‐bis(phosphonium) compounds have been well characterized previously and were used as models for spectroscopic comparison to the macromolecular analogues by NMR and XANES spectroscopy. This work reveals that the physical and electronic properties of the materials can be tuned depending on the type of coordination environment. These materials can be used as ceramic precursors, where the Sb‐functionalized polymers influence the composition of the resulting ceramic.  相似文献   

19.
A novel design of a sodium‐ion cell is proposed based on the use of nanocrystalline thin films composed of transition metal oxides. X‐ray diffraction, Raman spectroscopy and electron microscopy were helpful techniques to unveil the microstructural properties of the pristine nanostructured electrodes. Thus, Raman spectroscopy revealed the presence of amorphous NiO, α‐Fe2O3 (hematite) and γ‐Fe2O3 (maghemite). Also, this technique allowed the calculation of an average particle size of 23.4 Å in the amorphous carbon phase in situ generated on the positive electrode. The full sodium‐ion cell performed with a reversible capacity of 100 mA h g?1 at C/2 with an output voltage of about 1.8 V, corresponding to a specific energy density of about 180 W h kg?1. These promising electrochemical performances allow these transition metal thin films obtained by electrochemical deposition to be envisaged as serious competitors for future negative electrodes in sodium‐ion batteries.  相似文献   

20.
A series of nanostructured carbon/antimony composites have been successfully synthesized by a simple sol–gel, high‐temperature carbon thermal reduction process. In the carbon/antimony composites, antimony nanoparticles are homogeneously dispersed in the pyrolyzed nanoporous carbon matrix. As an anode material for lithium‐ion batteries, the C/Sb10 composite displays a high initial discharge capacity of 1214.6 mAh g?1 and a reversible charge capacity of 595.5 mAh g?1 with a corresponding coulombic efficiency of 49 % in the first cycle. In addition, it exhibits a high reversible discharge capacity of 466.2 mAh g?1 at a current density of 100 mA g?1 after 200 cycles and a high rate discharge capacity of 354.4 mAh g?1 at a current density of 1000 mA g?1. The excellent cycling stability and rate discharge performance of the C/Sb10 composite could be due to the uniform dispersion of antimony nanoparticles in the porous carbon matrix, which can buffer the volume expansion and maintain the integrity of the electrode during the charge–discharge cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号