首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Due to their striking optical properties, luminescent coordination polymers as sensors for the detection of hazardous species have drawn interest of researchers in consideration of the control of environmental pollution. In this work, the organic ligand 2‐(4‐((E)‐2‐(pyridine‐2‐yl)vinyl)styryl)pyridine (2‐bpeb), which possesses a large π‐conjugated system, was employed to react with d10 metal ions to obtain novel luminescent coordination polymers. Three complexes [Cd(2‐bpeb)0.5(CNA)(H2O)] ( CP1 ), [Cd(2‐bpeb)0.5(NDC)] ( CP2 ) and [Zn(2‐bpeb)(BDC)] ( CP3 ) were synthesized successfully by introducing carboxylic acids of 4‐carboxycinnamic acid (H2CNA), 2,6‐naphthalene dicarboxylic acid (H2NDC) and 1,4‐benzenedicarboxylic acid (H2BDC) as auxiliary ligands. Because of the existence of the large π‐conjugated system and d10 metal ions, all of these coordination polymers exhibit striking fluorescence properties. Impressively, all of them can function as sensors for the detection of highly oxidizing anions MnO4? and Cr2O72?, with an increased sensitivity for MnO4?.  相似文献   

2.
One of the most critical and yet unsolved issues is the effective monitoring of multiple heavy metal ions in complex systems through their specific function in fluorescence detection. In this work, luminescence-active cadmium base metal-organic frameworks (Cd-MOFs) based on the planar and rigid π-conjugated structure ligand benzo-(1,2;3,4;5,6)-tris (thiophene-2’-carboxylic acid) (H3BTTC) was chosen. A series of sensing experiments demonstrated that the Cd-MOFs exhibits selective and sensitive response for Fe3+ and Eu3+ through fluorescence “turn off” and “antenna effect” respectively. In addition, the encapsulation of Eu3+ inside the Cd-MOFs (Eu3+@Cd-MOFs) led to an excellent probe with dual emission. To this end, a programmable fluorescence platform was developed to detect Fe3+ and Cu2+, in which the emission peaks of both the ligand and Eu3+ are completely quenched by Fe3+. The ratiometric detection of Cu2+ leads to a decrease in Eu3+ emission, while the ligand emission remains stable. To demonstrate the strategy, the fluorescence (Output) of Cd-MOFs, Eu3+@Cd-MOFs, and the analytes (Eu3+, Fe3+, and Cu2+, input) achieved elementary Boolean logic operations (OR, NOR, AND) and they constitute a logic fluorescent chemosensor to analyze Fe3+ and Cu2+ synchronously.  相似文献   

3.
4.
Two new coordination polymers, {[Cd2(btc)(2,2′‐bpy)2] · H2O}n ( 1 ) and [Zn2(btc)(2,2′‐bpy)(H2O)]n ( 2 ) (H4btc = biphenyl‐2,2′,4,4′‐tetracarboxylic acid, 2,2′‐bpy = 2,2′‐bipyridine), were synthesized hydrothermally under similar conditions and characterized by elemental analysis, IR spectra, TGA, and single‐crystal X‐ray diffraction analysis. In complexes 1 and 2 , the (btc)4– ligand acts as connectors to link metal ions to give a 2D bilayer network of 1 and a 3D metal‐organic framework of 2 , respectively. The differences in the structures are induced by diverging coordination modes of the (btc)4– ligand, which can be attributed to the difference metal ions in sizes. The results indicate that metal ions have significant effects on the formation and structures of the final complexes. Additionally, the fluorescent properties of the two complexes were also studied in the solid state at room temperature.  相似文献   

5.
The behaviour of FeII and FeIII ions in combination with the potential ligand 1,4‐bis(2‐pyridyl‐methyl)piperazine (BPMP) under anhydrous conditions has been investigated. BPMP has been reacted with FeCl2, FeCl3 and [Fe(OTf)2(MeCN)2]. This led to the isolation of four new complexes, which were fully characterized and structurally investigated by single crystal X‐ray diffraction. It turned out that in the presence of chloride co‐ligands FeIII favours the tetradentate coordination mode of BPMP with the piperazine unit in a boat configuration, like for instance in [BPMP(Cl)Fe(μ‐O)FeCl3] or [BPMP‐FeCl2][FeCl4], ( 1 ). However, the employment of FeCl2 leads to the formation of a coordination polymer [BPMP‐FeCl2]n, ( 2 ), containing the piperazine ring in a chair configuration binding to two iron centres each. 2 can only be dissolved in very polar solvents like dmf which is capable of breaking up the polymeric structure under formation of [Cl2(dmf)Fe(μ‐BPMP‐1κ2N,N:2κ2N,N))Fe(dmf)Cl2]·2 dmf, ( 3 ). In contrast, using [Fe(OTf)2(MeCN)2] instead of FeCl2 as the starting material leads to a mononuclear FeII complex with BPMP bound in the desirable tetradentate fashion: [BPMP‐Fe(OTf)2], ( 4 ). Unlike other complexes with tetradentate N/py ligands the two residual ligands in 4 are bound almost trans to each other with the potential to adopt a cis orientation under oxidising conditions, and it will be interesting to exploit its catalytic properties in future.  相似文献   

6.
Hydrothermal synthesis has afforded a family of new coordination polymers incorporating 3,3′‐bipyridine (3,3′‐bpy), {[M(3,3′‐bpy)(H2O)4](SO4)·2H2O} (M = Co, Ni, Zn). The crystal structures revealed 1‐D undulating cationic ribbons of formulation {[M(3,3′‐bpy)(H2O)4]}n2n+ with both unligated charge‐balancing sulfate anions and water molecules of crystallization entrapped by hydrogen bonding. The 1‐D ribbons run along the (101) crystal direction and further aggregate via extensive hydrogen bonding patterns. Thermal decomposition data were consistent with stepwise loss of water molecules of crystallization and aquo ligands followed by decomposition due to ligand removal.  相似文献   

7.
Three copper(II) coordination polymers, namely, {[CuL(H2O)2] · 4H2O}n( 1 ), [CuL(H2O)(DMF)]n( 2 ), and [CuL(2, 2′‐bipy)(DMSO)] · DMSO ( 3 ) [H2L = 2, 2′‐(4, 6‐dinitro‐1, 3‐phenyl‐enedioxy)diacetic acid] were synthesized in different solvents (H2O, DMF, and DMSO). X‐ray single crystal diffraction studies show that both complexes 1 and 3 belong to triclinic crystal system and P$\bar{1}$ space group and complex 2 belongs to the monoclinic crystal system and P21/c space group. In three complexes, all the central CuII ions coordinate with the ligand, forming a square pyramidal configuration. Both complexes 1 and 2 show similar 1D chain‐like structure and the chains are further connected by hydrogen bonds, forming 3D frameworks. Complex 3 exhibits a 0D structure due to the introduction of the ligand 2, 2′‐bipy. In addition, the luminescence properties of these complexes were investigated.  相似文献   

8.
Three CdII coordination polymers (CPs), named as {[Cd2(DDPP)(DMF)(H2O)] · DMF}n ( 1 ), {[Cd2(DDPP)(H2O)2] · DMA · H2O}n ( 2 ), [Cd(H2DDPP)]n ( 3 ), based on 3,5‐di(2′,5‐dicarboxylphenyl)pyridine) (H4DDPP), were synthesized under solvothermal methods. Structural analysis indicates that the H4DDPP ligand of 1 – 3 adopt (κ1‐κ1)‐(κ1‐κ1)‐(κ1‐κ2)‐(κ1‐κ1)‐μ8, (κ1‐κ1)‐(κ1‐κ2)‐(κ1‐κ2)‐(κ1‐κ1)‐μ10, and (κ0‐κ0)‐(κ1‐κ2)‐(κ1‐κ2)‐(κ0‐κ0)‐μ6 coordination modes, respectively. CP 1 is a 2‐nodal (4,8)‐c alb ‐ 4 , 8 ‐ Pbcn network. CP 2 is a 3D 4,8‐c flu/fluorite network. CP 3 displays a 2D layer, which is further connected with hycrogen‐bonding interactions between layers to form supramolecular framework. Moreover, the fluorescent features of 1 – 3 were studied in aqueous systems and the values of detection limit (DL) are also calculated by 3σ/ksv. The results reveal that 1 – 3 have good ability on probing CrVI/FeIII ions.  相似文献   

9.
A water stable tetrazolate‐containing metal‐organic framework, [Cd2(L)(OH)(H2O)2]n ( 1 ) [H3L = 5‐(4‐(tetrazol‐5‐yl)phenyl)isophthalic acid], was synthesized under solvothermal conditions and structurally characterized. Compound 1 displays a three dimensional porous network with one dimensional tubular channels based on trinuclear cluster [Cd33‐OH)N4C] units. Notably, 1 exhibits highly sensitive response to Cu2+ and Cr2O72– through luminescence quenching effects with the detection limit of 0.666 ppm for Cu2+ and 0.846 ppm for Cr2O72–, respectively. The possible mechanism of the luminescence quenching was discussed in detail.  相似文献   

10.
Two 2D 4d‐4f heterometallic coordination polymers, [LnAg(Py26DC)2(H2O)3] · 3H2O [Ln = Nd ( 1 ), La ( 2 ); H2Py26DC = pyridine‐2,6‐dicarboxylic acid], and one 2D lanthanide homometallic coordination polymer, [Ln(Py25DC)(ox)0.5(H2O)2] [Ln = Tm ( 3 ); H2Py25DC = pyridine‐2,5‐dicarboxylic acid; ox = oxalate], were synthesized and characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis, and single‐crystal X‐ray diffraction analysis. Both complexes 1 and 2 are isostructural and exhibit 3‐connected 2D heterometallic layer structures with the Schläfli symbol of (82 · 10), whereas complex 3 represents an extended 2D homometallic network structure with (4,4) topology.  相似文献   

11.
Structures of Ionic Di(arenesulfonyl)amides. 4. Cross‐Linking Lamellar Layers by O–H…O Hydrogen Bonds: Structures of MN(SO2C6H4‐4‐COOH)2 (M = K, Rb, Cs) Syntheses and low‐temperature X‐ray crystal structures are reported for MIN(SO2C6H4‐4‐COOH)2, where M = K (monoclinic, space group P21/c, Z = 4, Z′ = 1), M = Rb (monoclinic, P21, Z = 4, Z′ = 2), or M = Cs (monoclinic, P21/c, Z = 4, Z′ = 1). The three compounds are examples of layered inorgano‐organic solids where the inorganic component is comprised of metal cations and N(SO2)2 groups and the outer regions are formed by the 4‐carboxy substituted phenyl rings of the folded anions. In the two‐dimensional coordination networks, K and Cs adopt irregular and chemically distinct [MN1O7] octacoordinations, whereas the independent Rb cations attain irregular nonacoordinations of type [RbN2O7] or [RbO9] respectively. The crystal packings of the compounds are governed by self‐assembly of parallel layers through exhaustive hydrogen bonding between carboxylic acid groups, resulting in a dense array of cyclic (COOH)2 motifs within the interlamellar regions.  相似文献   

12.
A three‐dimensional (3D) 3d‐4f complex, [Cu(en)2][Sm2(C5O5)(C2O4)3(H2O)2] · 8H2O ( 1 ) (en = ethylenediamine, C5O52– = dianion of 4,5‐dihydroxycyclopent‐4‐ene‐1,2,3‐trione), were prepared via the in‐situ ring‐opening oxidation reaction of croconate in the presence of the template‐directed complex, [Cu(en)2]2+ cation. The structural characterization determined by X‐ray diffraction determination reveals that the 3D anionic coordination polymer of [Sm2(C2O4)3(C5O5)(H2O)2]2– in 1 can be describe in terms of in‐plane 2D honeycomb‐like [Sm2(C2O4)3] layered frameworks bridged by oxalate with bis‐chelating mode, being mutually interlinked via the bridge of μ1,2,3,4‐croconate ligands with bis‐chelating coordination mode to complete the 3D open framework, which gives rise to 1D channels with pore size of 14.023 × 11.893 Å (longest atom–atom contact distances) along the b axis. The structure‐directing complex, [Cu(en)2]2+, and solvated water molecules are resided into these honeycomb‐type hexagonal channels. The thermal stability of 1 was further studied by TGA and in‐situ powder X‐ray diffraction measurement.  相似文献   

13.
14.
[Ph2P(O)CH2Im][F3B(μ‐OH)BF3]. First Structural Characterization of the Hexafluoro(μ‐hydroxo)diborate Ion [1] The hexafluoro(μ‐hydroxo)diborate ion has been isolated as it's Ph2P(O)CH2Im salt [Im = 2‐(1, 3, 4, 5‐tetramethylimidazolio)] ( 2 ) through basic hydrolysis of [Ph2P(OBF3)CH2Im]BF4 ( 1 ). The crystal structure of 2 · CH2Cl2 reveals the presence of ion pairs linked by unsymmetrical O‐H‐O hydrogen bonds.  相似文献   

15.
A novel Fe2O3 modified indium tin oxide electrode (Fe2O3/ITO) was fabricated by iron ion‐implantation method first, and then annealed at 300 °C. Fe2O3/ITO reveals good catalytic performance toward hydrogen peroxide (H2O2) in phosphate buffer solution due to the Fe(II)/Fe(III) redox couple. Amperometric response shows a linear dependency on the H2O2 concentration ranging up to 360 μM with a detection limit of 0.3 μM. Moreover, electrocatalytic activity based on rarely reported higher oxidation states of iron (tentatively assigned to Fe(IV)) was shown to allow the reliable detection of glucose and cysteine. The results show promising application potential of the proposed electrode.  相似文献   

16.
An unprecedented coupling reaction of heteroatom-containing tripyrranes leads to the formation of core-modified sapphyrins 1 and 2 , which self-assemble in the solid state to form supramolecular ladders. Weak C−H⋅⋅⋅S and C−H⋅⋅⋅Se hydrogen-bonding interactions in addition to C−H⋅⋅⋅N hydrogen bonds are responsible for the observed structures.  相似文献   

17.
A chiral coordination compound {(Δ)[Fe(II)(phen)3][(Δ)Fe(III)(C2O4)3](NH4)(H2O)3(DMF)}n (phen = 1,10‐phenanthroline), (DMF = N,N'‐Dimethylformamide), has been synthesized, and the structure has been revealed by infrared spectroscopy and X‐ray single‐crystal diffraction. The framework consists of two chiral subunits. One subunit (Δ)[(Fe(III)(C2O4)3]3? which as host anion forms a chiral porous three‐dimensional supermolecular network with lattice water, lattice DMF and lattice ammonium cation through hydrogen bonds. And then the other is Δ[Fe(II)(phen)3]2+ which as guest cation fills in the chiral cavity located in the previously mentioned host porous network.  相似文献   

18.
Four ZnII/CdII coordination polymers (CPs) based on 2‐(4‐carboxy‐phenyl)imidazo[4, 5‐f]‐1, 10‐phenanthroline (HNCP) and different derivatives of 5‐R‐1, 3‐benzenedicarboxylate (5‐R‐1, 3‐BDC) (R = NO2, H, OH), [Zn(HNCP)(5‐NO2‐1, 3‐BDC)]n ( 1 ), [Cd(HNCP)(5‐NO2‐1, 3‐BDC)]n ( 2 ), [Zn(HNCP)(1, 3‐BDC)(H2O)2]n ( 3 ), and {[Zn(HNCP)(5‐OH‐1, 3‐BDC)(H2O) · H2O}n ( 4 ) were synthesized under hydrothermal conditions. Compounds 1 – 4 were determined by elemental analyses, IR spectroscopy, and single‐crystal and powder X‐ray diffraction. Compounds 1 and 2 are isomorphous, presenting a 4‐connected uninodal (4, 4)‐sql 2D framework with threefold interpenetration, which are further extended into the three‐dimensional (3D) supramolecular architecture through π ··· π stacking interactions between the aryl rings of 5‐NO2‐1, 3‐BDC. Compared to compound 1 , 3 is obtained by using different reaction temperatures and metal‐ligand ratios, generating a 3D framework with –ABAB– fashion via π ··· π stacking interactions. Compound 4 is a 1D chain, which is further extended into a 3D supramolecular net by hydrogen bonds and π ··· π stacking interactions. The thermogravimetric and fluorescence properties of 1 – 4 were also explored.  相似文献   

19.
Single crystals of PbADC ( 1 ) and PbADC · H2O ( 2 ) formed at the phase boundary of an aqueous silica gel containing acetylenedicarboxylic acid (HOOC–C≡C–COOH, H2ADC) and an aqueous solution containing Pb(NO3)2. By choosing different concentrations of Pb(NO3)2, compounds 1 and 2 were obtained as phase pure products. Additionally, 1 was obtained by grinding Pb(CH3COO)2 · 3H2O with H2ADC resulting in a polycrystalline sample. The crystal structures of 1 (I41/amd, Z = 4; SrADC type structure) and 2 (P21/c, Z = 4, new structure type) were solved and refined from X‐ray single crystal data. Compound 1 exhibits a three‐dimensional framework structure: lead cations with a diamond‐like arrangement are interconnected by bridging ADC2– ligands. In 2 double‐layers are formed by lead cations, bridging ADC2– anions, and water molecules. These layers are held together by hydrogen bonds through water molecules and oxygen atoms of the ADC2– ligands. Suspending 1 for 24 h in water at ambient conditions leads to the formation of 2 , which can be converted to 1 again by careful dehydration at approx. 400 K in vacuo. This reversible reaction can be structurally interpreted as a topochemical reaction, which transforms a 3D coordination network into a 2D network structure and vice versa, as both crystal structures show noticeable structural similarities.  相似文献   

20.
Powder material of ?‐Fe2O3 was obtained by thermal decomposition of the clay mineral nontronite and subsequent isolation of the ferric oxide by leaching the silicate phases. Additionally, crystals of ?‐Fe2O3 were grown as precipitates by internal oxidation of a Pd96Fe4 alloy. Analysis of the precipitate crystals by electron diffraction yields an orthorhombic crystal system and space group Pna21 ab initio. X‐ray diffraction data of the powder containing small amounts of Al substituting Fe were refined by the Rietveld method. The refinement yields lattice parameters a = 507.15 pm, b = 873.59 pm and c = 941.78 pm, and atom positions. ?‐Fe2O3 is isostructural with κ‐Al2O3, AlFeO3, and GaFeO3 having an anion stacking sequence /ABAC/, and 1/4 of the cations in tetrahedral co‐ordination. Some strongly distorted FeO6 octahedrons with one large Fe‐O distance, which may be considered as a 5+1 co‐ordination, appear to be characteristic for ?‐Fe2O3. The structure shows elements known from silicates and oxyhydroxides of iron, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号