首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Near‐infrared (NIR) imaging techniques have attracted significant attention for biological and medicinal applications due to the ability of NIR to penetrate deeply into tissues. However, there are very few stable, activatable molecular probes that can utilize NIR light in the wavelength range beyond 800 nm. Herein, we report a new activatable NIR system for photoacoustic imaging based on tautomeric benziphthalocyanines (BPcs). We found that the existence of a free hydroxyl group is crucial for NIR absorption of BPcs. Synthesized water‐soluble hydroxy BPcs exhibited high photostability and no fluorescence, which are desirable features for photoacoustic imaging. We synthesized BPcs in which the free hydroxyl group was masked by an esterase‐labile or an H2O2‐labile group. The photoacoustic signals of these hydroxy‐masked BPcs were increased upon NIR excitation at 880 nm in the presence of esterase or H2O2, respectively. These are rare examples of activatable probes utilizing NIR light at around 900 nm.  相似文献   

2.
Fluorescent probes in the second near‐infrared window (NIR‐II) allow high‐resolution bioimaging with deep‐tissue penetration. However, existing NIR‐II materials often have poor signal‐to‐background ratios because of the lack of target specificity. Herein, an activatable NIR‐II nanoprobe for visualizing colorectal cancers was devised. This designed probe displays H2S‐activated ratiometric fluorescence and light‐up NIR‐II emission at 900–1300 nm. By using this activatable and target specific probe for deep‐tissue imaging of H2S‐rich colon cancer cells, accurate identification of colorectal tumors in animal models were performed. It is anticipated that the development of activatable NIR‐II probes will find widespread applications in biological and clinical systems.  相似文献   

3.
NIR light responsive nanoplatforms hold great promise for on‐demand drug release in precision cancer medicine. However, currently available systems utilize “always‐on” photothermal transducers that lack target specificity, and thus inaccurately differentiate tumors from normal tissues. Developed here is a theranostic nanoplatform featuring H2S‐mediated in situ production of NIR photothermal agents for imaging‐guided and photocontrolled drug release. The system targets H2S‐rich cancers. This nanoplatform shows H2S‐activatable NIR‐II emission and NIR light controllable release of the drug Camptothecin‐11. Upon administering the system to HCT116 tumor‐bearing mice, the tumor is greatly suppressed with minimal side effects, arising from the synergy of the cancer‐specific and NIR light activated therapy. This theranostic nanoplatform thus sheds light on precision medicine with guidance through NIR‐II imaging.  相似文献   

4.
Near‐infrared (NIR) fluorescent dyes with favorable photophysical properties are highly useful for bioimaging, but such dyes are still rare. The development of a unique class of NIR dyes via modifying the rhodol scaffold with fused tetrahydroquinoxaline rings is described. These new dyes showed large Stokes shifts (>110 nm). Among them, WR3, WR4, WR5, and WR6 displayed high fluorescence quantum yields and excellent photostability in aqueous solutions. Moreover, their fluorescence properties were tunable by easy modifications on the phenolic hydroxy group. Based on WR6, two NIR fluorescent turn‐on probes, WSP‐NIR and SeSP‐NIR, were devised for the detection of H2S. The probe SeSP‐NIR was applied in visualizing intracellular H2S. These dyes are expected to be useful fluorophore scaffolds in the development of new NIR probes for bioimaging.  相似文献   

5.
Hypoxia, as a characteristic feature of solid tumor, can significantly adversely affect the outcomes of cancer radiotherapy (RT), photodynamic therapy, or chemotherapy. In this study, a strategy is developed to overcome tumor hypoxia‐induced radiotherapy tolerance. Specifically, a novel two‐dimensional Pd@Au bimetallic core–shell nanostructure (TPAN) was employed for the sustainable and robust production of O2 in long‐term via the catalysis of endogenous H2O2. Notably, the catalytic activity of TPAN could be enhanced via surface plasmon resonance (SPR) effect triggered by NIR‐II laser irradiation, to enhance the O2 production and thereby relieve tumor hypoxia. Thus, TPAN could enhance radiotherapy outcomes by three aspects: 1) NIR‐II laser triggered SPR enhanced the catalysis of TPAN to produce O2 for relieving tumor hypoxia; 2) high‐Z element effect arising from Au and Pd to capture X‐ray energy within the tumor; and 3) TPAN affording X‐ray, photoacoustic, and NIR‐II laser derived photothermal imaging, for precisely guiding cancer therapy, so as to reduce the side effects from irradiation.  相似文献   

6.
Copper enrichment in the brain is highly related to Alzheimer's disease (AD) pathogenesis, but in vivo tracing of Cu2+ in the brain by imaging techniques is still a great challenge. In this work, we developed a series of activatable photoacoustic (PA) probes with low molecular weights (less than 438 Da), RPS1 – RPS4 , which can specifically chelate with Cu2+ to form radicals with turn‐on PA signals in the near‐infrared (NIR) region. Introducing the electron‐donating group N,N‐dimethylaniline into the probe was found to significantly enhance the radical stability and PA intensity. The best probe in the series, RPS1 , showed a fast response (within seconds) to Cu2+ with high selectivity and a low PA detection limit of 90.9 nm . Owing to the low molecular weight and amphiphilic structure, RPS1 could effectively cross the blood–brain barrier (BBB) and thus allowed us, for the first time, to visualize Cu2+ in vivo via PA imaging in the brains of AD mice.  相似文献   

7.
Optical imaging plays a crucial role in biomedicine. However, due to strong light scattering and autofluorescence in biological tissue between 650–900 nm, conventional optical imaging often has a poor signal‐to‐background ratio and shallow penetration depth, which limits its ability in deep‐tissue in vivo imaging. Second near‐infrared fluorescence, chemiluminescence, and photoacoustic imaging modalities mitigate these issues by their respective advantages of minimized light scattering, eliminated external excitation, and ultrasound detection. To enable disease detection, activatable molecular probes (AMPs) with the ability to change their second near‐infrared fluorescence, chemiluminescence, or photoacoustic signals in response to a biomarker have been developed. This Minireview summarizes the molecular design strategies, sensing mechanisms, and imaging applications of AMPs. The potential challenges and perspectives of AMPs in deep‐tissue imaging are also discussed.  相似文献   

8.
Currently, photosensitizers (PSs) that are microenvironment responsive and hypoxia active are scarcely available and urgently desired for antitumor photodynamic therapy (PDT). Presented herein is the design of a redox stimuli activatable metal‐free photosensitizer (aPS), also functioning as a pre‐photosensitizer as it is converted to a PS by the mutual presence of glutathione (GSH) and hydrogen peroxide (H2O2) with high specificity on a basis of domino reactions on the benzothiadiazole ring. Superior to traditional PSs, the activated aPS contributed to efficient generation of reactive oxygen species including singlet oxygen and superoxide ion through both type 1 and type 2 pathways, alleviating the aerobic requirement for PDT. Equipped with a triphenylphosphine ligand for mitochondria targeting, mito aPS showed excellent phototoxicity to tumor cells with low light fluence under both normoxic and hypoxic conditions, after activation by intracellular GSH and H2O2. The mito aPS was also compatible to near infrared PDT with two photon excitation (800 nm) for extensive bioapplications.  相似文献   

9.
Magneto‐plasmonic Janus vesicles (JVs) integrated with gold nanoparticles (AuNPs) and magnetic NPs (MNPs) were prepared asymmetrically in the membrane for in vivo cancer imaging. The hybrid JVs were produced by coassembling a mixture of hydrophobic MNPs, free amphiphilic block copolymers (BCPs), and AuNPs tethered with amphiphilic BCPs. Depending on the size and content of NPs, the JVs acquired spherical or hemispherical shapes. Among them, hemispherical JVs containing 50 nm AuNPs and 15 nm MNPs showed a strong absorption in the near‐infrared (NIR) window and enhanced the transverse relaxation (T2) contrast effect, as a result of the ordering and dense packing of AuNPs and MNPs in the membrane. The magneto‐plasmonic JVs were used as drug delivery vehicles, from which the release of a payload can be triggered by NIR light and the release rate can be modulated by a magnetic field. Moreover, the JVs were applied as imaging agents for in vivo bimodal photoacoustic (PA) and magnetic resonance (MR) imaging of tumors by intravenous injection. With an external magnetic field, the accumulation of the JVs in tumors was significantly increased, leading to a signal enhancement of approximately 2–3 times in the PA and MR imaging, compared with control groups without a magnetic field.  相似文献   

10.
The crystal structures of the first stable α‐diol from the α‐halogenopyruv­amide series, 3‐chloro‐2,2‐di­hydroxy‐3‐phenyl­propan­amide, C9H10­ClNO3, and three products [3‐(4‐chloro­phenyl)‐2‐cyano‐2,3‐epoxy­propan­amide, C10H7­ClN2O2, 3‐bromo‐2‐cyano‐2‐hydroxy‐3‐p‐tolyl­propan­amide, C11H11Br­N2O2, 3‐bromo‐2‐oxo‐3‐p‐tolyl­propan­amide, C10H10­BrNO2] obtained during the systematic synthesis of α‐halogenopyruv­amides are reported. The crystal structures are dominated by hydrogen bonds involving an amide group. The stability of the geminal diol could be ascribed to hydrogen bonds which involve both hydroxyl groups.  相似文献   

11.
Efficient utilization of solar energy is a high‐priority target and the search for suitable materials as photocatalysts that not only can harvest the broad wavelength of solar light, from UV to near‐infrared (NIR) region, but also can achieve high and efficient solar‐to‐hydrogen conversion is one of the most challenging missions. Herein, using Au/La2Ti2O7 (BP‐Au/LTO) sensitized with black phosphorus (BP), a broadband solar response photocatalyst was designed and used as efficient photocatalyst for H2 production. The optimum H2 production rates of BP‐Au/LTO were about 0.74 and 0.30 mmol g−1 h−1 at wavelengths longer than 420 nm and 780 nm, respectively. The broad absorption of BP and plasmonic Au contribute to the enhanced photocatalytic activity in the visible and NIR light regions. Time‐resolved diffuse reflectance spectroscopy revealed efficient interfacial electron transfer from excited BP and Au to LTO which is in accordance with the observed high photoactivities.  相似文献   

12.
Hydrogen peroxide (H2O2) mediates the biology of wound healing, apoptosis, inflammation, etc. H2O2 has been fluorometrically imaged with protein‐ or small‐molecule‐based probes. However, only protein‐based probes have afforded temporal insights within seconds. Small‐molecule‐based electrophilic probes for H2O2 require many minutes for a sufficient response in biological systems. Here, we report a fluorogenic probe that selectively undergoes a [2,3]‐sigmatropic rearrangement (seleno‐Mislow‐Evans rearrangement) with H2O2, followed by acetal hydrolysis, to produce a green fluorescent molecule in seconds. Unlike other electrophilic probes, the current probe acts as a nucleophile. The fast kinetics enabled real‐time imaging of H2O2 produced in endothelial cells in 8 seconds (much earlier than previously shown) and H2O2 in a zebrafish wound healing model. This work may provide a platform for endogenous H2O2 detection in real time with chemical probes.  相似文献   

13.
Multimodal imaging and simultaneous therapy is highly desirable because it can provide complementary information from each imaging modality for accurate diagnosis and, at the same time, afford an imaging‐guided focused tumor therapy. In this study, indocyanine green (ICG), a near‐infrared (NIR) imaging agent and perfect NIR light absorber for laser‐mediated photothermal therapy, was successfully incorporated into superparamagnetic Fe3O4@mSiO2 core–shell nanoparticles to combine the merit of NIR/magnetic resonance (MR) bimodal imaging properties with NIR photothermal therapy. The resultant nanoparticles were homogenously coated with poly(allylamine hydrochloride) (PAH) to make the surface of the composite nanoparticles positively charged, which would enhance cellular uptake driven by electrostatic interactions between the positive surface of the nanoparticles and the negative surface of the cancer cell. A high biocompatibility of the achieved nanoparticles was demonstrated by using a cell cytotoxicity assay. Moreover, confocal laser scanning microscopy (CLSM) observations indicated excellent NIR fluorescent imaging properties of the ICG‐loaded nanoparticles. The relatively high r2 value (171.6 mM ?1 s?1) of the nanoparticles implies its excellent capability as a contrast agent for MRI. More importantly, the ICG‐loaded nanoparticles showed perfect NIR photothermal therapy properties, thus indicating their potential for simultaneous cancer diagnosis as highly effective NIR/MR bimodal imaging probes and for NIR photothermal therapy of cancerous cells.  相似文献   

14.
Acridinium benzoate was developed as a unique ICT-based fluorescent scaffold for both ratiometric and turn-on fluorescence imaging through decaging of the phenolic hydroxyl groups. Two fluorescent probes, Acr1-H2O2 and Acr1- β -gal , were developed for the fluorescence imaging of H2O2 and β-galactosidase in vivo.  相似文献   

15.
Two salts of acyclic Schiff base cationic ligands, namely N,N′‐bis(2‐nitrobenzyl)propane‐1,3‐diammonium dichloride monohydrate, C17H22N4O42+·2Cl·H2O, (I), and 2‐hydroxy‐N,N′‐bis(2‐nitrobenzyl)propane‐1,3‐diammonium dichloride, C17H22N4O52+·2Cl, (II), were synthesized as precursors in order to obtain new acyclic and macrocyclic multidentate ligands and complexes. The cation conformations in compounds (I) and (II) are different in the solid state, although the cations are closely related chemically. Similarly, the hydrogen‐bonding networks involving ammonium cations, hydroxyl groups and chloride anions are also different. In the cation of compound (II), the hydroxyl group is disordered over two sets of sites, with occupancies of 0.785 (8) and 0.215 (8).  相似文献   

16.
Copper(II)–Schiff base complexes have attracted extensive interest due to their structural, electronic, magnetic and luminescence properties. The title novel monomeric CuII complex, [Cu(C10H11N2O4)2], has been synthesized by the reaction of 3‐{[(3‐hydroxypropyl)imino]methyl}‐4‐nitrophenol (H2L ) and copper(II) acetate monohydrate in methanol, and was characterized by elemental analysis, UV and IR spectroscopies, single‐crystal X‐ray diffraction analysis and a photoluminescence study. The CuII atom is located on a centre of inversion and is coordinated by two imine N atoms, two phenoxy O atoms in a mutual trans disposition and two hydroxy O atoms in axial positions, forming an elongated octahedral geometry. In the crystal, intermolecular O—H…O hydrogen bonds link the molecules to form a one‐dimensional chain structure and π–π contacts also connect the molecules to form a three‐dimensional structure. The solid‐state photoluminescence properties of the complex and free H2L have been investigated at room temperature in the visible region. When the complex and H2L are excited under UV light at 349 nm, the complex displays a strong green emission at 520 nm and H2L displays a blue emission at 480 nm.  相似文献   

17.
The synthesis of organometallic complexes of modified 26π‐conjugated hexaphyrins with absorption and emission capabilities in the third near‐infrared region (NIR‐III) is described. Symmetry alteration of the frontier molecular orbitals (MOs) of bis‐PdII and bis‐PtII complexes of hexaphyrin via N‐confusion modification led to substantial metal dπ–pπ interactions. This MO mixing, in turn, resulted in a significantly narrower HOMO–LUMO energy gap. A remarkable long‐wavelength shift of the lowest S0→S1 absorption beyond 1700 nm was achieved with the bis‐PtII complex, t ‐Pt2‐3 . The emergence of photoacoustic (PA) signals maximized at 1700 nm makes t ‐Pt2‐3 potentially useful as a NIR‐III PA contrast agent. The rigid bis‐PdII complexes, t ‐Pd2‐3 and c ‐Pd2‐3 , are rare examples of NIR emitters beyond 1500 nm. The current study provides new insight into the design of stable, expanded porphyrinic dyes possessing NIR‐III‐emissive and photoacoustic‐response capabilities.  相似文献   

18.
Intrinsically integrating precise diagnosis, effective therapy, and self‐anti‐inflammatory action into a single nanoparticle is attractive for tumor treatment and future clinical application, but still remains a great challenge. In this study, bovine serum albumin–iridium oxide nanoparticles (BSA‐IrO2 NPs) with extraordinary photothermal conversion efficiency, good photocatalytic activity, and a high X‐ray absorption coefficient were prepared through one‐step biomineralization. The nanoparticles allow tumor phototherapy and simultaneous photoacoustic/thermal imaging and computed tomography. More importantly, BSA‐IrO2 NPs can also act as a catalase to protect normal cells against H2O2‐induced reactive oxygen pressure and inflammation while significantly enhancing photoacoustic imaging through microbubble‐based inertial cavitation. These remarkable features may open up the exploration iridium‐based nanomaterials in theranostics.  相似文献   

19.
Optical imaging plays a growing role in modern biomedical research and clinical applications due to its high sensitivity, superb spatiotemporal resolution and minimal hazards. Lanthanide‐doped nanoparticles (LDNPs), as a classical category of luminescent materials, exhibit promising photostability, near‐infrared (NIR)‐excited frequency up‐/down‐converting capabilities, emission fine‐tuning and multispectral features, which have greatly promoted the endeavors of deeper and clearer diagnostics in complex living conditions. This review focuses on the recent advances of LDNP‐based multipurpose imaging studies using upconversion, downshifting, lifetime, photoacoustic and multimodal nanoprobes in the NIR (650–1000 nm) and the second near‐infrared window (NIR‐II, 1000–1700 nm). The principle and design of various functional, activatable, multiplexing or multimodal lanthanide‐imaging nanoprobes (LINPs) as well as representative biophotonic applications are summarized in detail. In addition, the future perspectives and challenges for facilitating LINPs to clinical translations are discussed.  相似文献   

20.
2,3,6,7‐Tetra­hydroxy‐9,10‐di­methyl‐9,10‐di­hydro‐9,10‐ethano­anthracene crystallizes with 1,4‐dioxane to give a bis‐solvate, C18H18O4·2C4H8O2. The bis­(catechol) mol­ecule is located on a twofold axis and the two aromatic rings form a dihedral angle of 130.61 (4)°. Hydro­gen bonds are formed between the hydroxyl groups and either a neighbouring bis­(catechol) mol­ecule or the ether‐O atom of a dioxane mol­ecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号