首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this study, a total of 484 unrelated healthy individuals and 359 two‐generation families in the Han population in Shanghai, China were successfully analyzed with the Investigator HDplex Kit (Qiagen, Hilden, Germany). Hardy–Weinberg equilibrium tests demonstrated no significant deviation from expected values (p > 0.05) for the 12 autosomal STRs included in this kit. A total of 173 alleles were detected in 12 autosomal STR loci; the largest number of alleles (32) was detected for the SE33 locus. The combined power of discrimination was 0.99999999992. The combined mean exclusion chance in duo cases was 0.99982, whereas the combined mean exclusion chance in trio cases was 0.9999986. The average mutation rate across all loci was 0.0023 (95% confidence intervals: 0.0013–0.0039). These results suggest that the 12 autosomal STR loci can provide highly informative polymorphic data for paternity testing and forensic identification in the Han population in Shanghai, China.  相似文献   

2.
《Electrophoresis》2017,38(7):1016-1021
A Y‐STR multiplex system has been developed with the purpose of complementing the widely used 17 Y‐STR haplotyping (AmpFlSTR Y Filer® PCR Amplification kit) routinely employed in forensic and population genetic studies. This new multiplex system includes six additional STR loci (DYS576, DYS481, DYS549, DYS533, DYS570, and DYS643) to reach the 23 Y‐STR of the PowerPlex® Y23 System. In addition, this kit includes the DYS456 and DYS385 loci for traceability purposes. Male samples from 625 individuals from ten worldwide populations were genotyped, including three sample sets from populations previously published with the 17 Y‐STR system to expand their current data. Validation studies demonstrated good performance of the panel set in terms of concordance, sensitivity, and stability in the presence of inhibitors and artificially degraded DNA. The results obtained for haplotype diversity and discrimination capacity with this multiplex system were considerably high, providing further evidences of the suitability of this novel Y‐STR system for forensic purposes. Thus, the use of this multiplex for samples previously genotyped with 17 Y‐STRs will be an efficient and low‐cost alternative to complete the set of 23 Y‐STRs and improve allele databases for population and forensic purposes.  相似文献   

3.
There is growing interest in developing additional DNA typing techniques to provide better investigative leads in forensic analysis. These include inference of genetic ancestry and prediction of common physical characteristics of DNA donors. To date, forensic ancestry analysis has centered on population‐divergent SNPs but these binary loci cannot reliably detect DNA mixtures, common in forensic samples. Furthermore, STR genotypes, forming the principal DNA profiling system, are not routinely combined with forensic SNPs to strengthen frequency data available for ancestry inference. We report development of a 12‐STR multiplex composed of ancestry informative marker STRs (AIM‐STRs) selected from 434 tetranucleotide repeat loci. We adapted our online Bayesian classifier for AIM‐SNPs: Snipper, to handle multiallele STR data using frequency‐based training sets. We assessed the ability of the 12‐plex AIM‐STRs to differentiate CEPH Human Genome Diversity Panel populations, plus their informativeness combined with established forensic STRs and AIM‐SNPs. We found combining STRs and SNPs improves the success rate of ancestry assignments while providing a reliable mixture detection system lacking from SNP analysis alone. As the 12 STRs generally show a broad range of alleles in all populations, they provide highly informative supplementary STRs for extended relationship testing and identification of missing persons with incomplete reference pedigrees. Lastly, mixed marker approaches (combining STRs with binary loci) for simple ancestry inference tests beyond forensic analysis bring advantages and we discuss the genotyping options available.  相似文献   

4.
Compound marker consists of two different types of genetic markers, like deletion/insertion polymorphism and single nucleotide polymorphism in the genomic region of 200 bp, and microhaplotype consists of a series of closely linked single nucleotide polymorphisms in a small DNA segment (<300 bp), which show great potential for human identifications and mixture analyses. In this study, we initially selected 23 novel genetic markers comprising 10 microhaplotypes and 13 compound markers according to previously reported single nucleotide polymorphism or deletion/insertion polymorphism loci. Genetic distributions of these 23 loci in different continental populations showed that they could be used as valuable loci for forensic human identification purpose. Besides, high informativeness values (>0.1) were observed in six loci which could be further employed for forensic ancestry analyses. Finally, 18 loci were successfully developed into a multiplex panel and detected by the next generation sequencing (NGS) technology. Further analyses of these 18 loci in the studied Shaanxi Han population showed that 15 loci exhibited relatively high expected heterozygosities (>0.5). Cumulative power of discrimination (0.999 999 999 99 4835) of these 18 loci revealed that the multiplex panel could also be utilized for human identifications in the studied Shaanxi Han population.  相似文献   

5.
Current forensic DNA profiles are obtained based on analyses of PCR product sizes or DNA sequence polymorphisms. Sometimes routine forensic analysis using short tandem repeat (STR) generates unsuccessful DNA testing result if the biological sample encountered is excessively degraded and low-template DNA. Herein, a new six-color fluorescence labeling system, including 59 autosomal diallelic deletion or insertion polymorphisms (DIPs), 2 miniSTRs, 2 Y-chromosome DIPs, and 1 Amelogenin gene with the amplicon sizes of less than 200 bp, was self-developed. According to the validation guidelines for DNA analysis methods formulated by the Scientific Working Group on DNA Analysis Methods, the validation studies have also been carried out for the multiplex system. This novel panel possessed the features of strong stability, high sensitivity, and good specificity, which was especially suitable for the forensic degraded and mixed sample detections. The cumulative power of exclusion and cumulative matching probability of the system were 0.9999978 and 9.833E-28, respectively, in Han Chinese in Hunan, China. Moreover, this system will be an effective new tool that can be independently applied to forensic personal identification and paternity testing in the populations from the East Asia region, even from the South Asia, America, and Europe regions. The system can also contribute to population phylogenetic affinity and genetic structure analyses among different populations.  相似文献   

6.
Short tandem repeats (STRs), known as microsatellites, are one of the most informative genetic markers for characterizing biological materials. Because of the relatively small size of STR alleles (generally 100-350 nucleotides), amplification by polymerase chain reaction (PCR) is relatively easy, affording a high sensitivity of detection. In addition, STR loci can be amplified simultaneously in a multiplex PCR. Thus, substantial information can be obtained in a single analysis with the benefits of using less template DNA, reducing labor, and reducing the contamination. We investigated 14 STR loci in a Japanese population living in Sendai by three multiplex PCR kits, GenePrint PowerPlex 1.1 and 2.2. Fluorescent STR System (Promega, Madison, WI, USA) and AmpF/STR Profiler (Perkin-Elmer, Norwalk, CT, USA). Genomic DNA was extracted using sodium dodecyl sulfate (SDS) proteinase K or Chelex 100 treatment followed by the phenol/chloroform extraction. PCR was performed according to the manufacturer's protocols. Electrophoresis was carried out on an ABI 377 sequencer and the alleles were determined by GeneScan 2.0.2 software (Perkin-Elmer). In 14 STRs loci, statistical parameters indicated a relatively high rate, and no significant deviation from Hardy-Weinberg equilibrium was detected. We apply this STR system to paternity testing and forensic casework, e.g., personal identification in rape cases. This system is an effective tool in the forensic sciences to obtain information on individual identification.  相似文献   

7.
X‐chromosomal short tandem repeats (X‐STRs) have been proved to be useful for some deficiency paternity cases in recent years. Here, we studied the genetic polymorphisms of 19 X‐STR loci (DXS10148‐DXS10135‐DXS8378, DXS10159‐DXS10162‐DXS10164, DXS7132‐DXS10079‐DXS10074‐DXS10075, DXS6809‐DXS6789, DXS7424‐DXS101, DXS10103‐HPRTB‐DXS10101 and DXS7423‐DXS10134) in 252 male and 222 female individuals from Guanzhong Han population, China. No deviation for all 19 loci was observed from the Hardy–Weinberg equilibrium. The polymorphism information content values of the panel of 19 loci were more than 0.5 with the exception of the locus DXS7423. The combined power of discrimination were 0.9999999999999999999994340 in females and 0.9999999999997662 in males, respectively; and the combined mean exclusion chances were 0.999999993764 in duos and 0.999999999997444 in trios, respectively. The haplotype diversities for all the seven clusters of linked loci were more than 0.9. The results showed that the panel of 19 X‐STR loci were powerful for forensic applications in Guanzhong Han population. Locus by locus population comparisons showed significant differences at more than seven loci between Guanzhong Han population and the groups from North America, Europe and Africa.  相似文献   

8.
With a unique inheritance pattern compared to autosomal short tandem repeats (A-STRs), X chromosomal STRs (X-STRs) have special usage in forensic relationship testing. In this study, we designed a multiplex amplification system (named TYPER-X19 multiplex assay) consisting of 18 STR loci spreading from 7.837 to 149.460 Mb on the X chromosomes (DXS9895, DXS8378, DXS9902, DXS6810, DXS7132, DXS10079, DXS6789, DXS7424, DXS101, DXS6797, DXS7133, DXS6804, GATA165B12, DXS10103, HPRTB, GATA31E08, DXS8377, and DXS7423), and the amelogenin. PCR primers were marked with four kinds of fluorophores including FAM, HEX, TAMRA, and ROX. The multiplex system was optimized and tested for precision, concordance, reproducibility, sensitivity, stability, DNA mixture, and species specificity according to the conventional validation guidelines. The results indicated that the system was accurate, reliable, and sensitive enough, and was suitable for common forensic case-type samples. In the population genetic study, a total of 148 alleles were detected at the 18 X-STR loci in 398 Southern Han Chinese. Relatively high combined power of discrimination in male (PDm), power of discrimination in female (PDf), mean paternity exclusion chance in trios (MECtrio), and mean paternity exclusion chance in duos (MECDuo) by Desmarais were detected, and HPRTB-DXS10103 was in linkage disequilibrium. The results suggested that the TYPER-X19 multiplex assay was suitable for forensic applications.  相似文献   

9.
《Electrophoresis》2017,38(6):846-854
This study assesses the performance of Illumina's MiSeq FGx System for forensic genomics by systematically analyzing single source samples, evaluating concordance, sensitivity and repeatability, as well as describing the quality of the reported outcomes. DNA from 16 individuals (9 males/7 females) in nine separate runs showed consistent STR profiles at DNA input ≥400 pg, and two full profiles were obtained with 50 pg DNA input. However, this study revealed that the outcome of a single sample does not merely depend on its DNA input but is also influenced by the total amount of DNA loaded onto the flow cell from all samples. Stutter and sequence or amplification errors can make the identification of true alleles difficult, particularly for heterozygous loci that show allele imbalance. Sequencing of 16 individuals’ STRs revealed genetic variations at 14 loci at frequencies suggesting improvement of mixture deconvolution. The STR loci D1S1656 and DXS10103 were most susceptible to drop outs, and D22S1045 and DYS385a‐b showed heterozygote imbalance.  Most stutters were typed at TH01 and DYS385a‐b, while amplification or sequencing errors were observed mostly at D7S820 and D19S433. Overall, Illumina's MiSeq FGx System produced reliable and repeatable results.  aSTRs showed fewer drop outs than the Y‐ and X‐STRs.  相似文献   

10.
This study developed a new multiplex PCR system that simultaneously amplifies 16 X‐STR loci in the same PCR reaction, and the polymorphism and mutation rates of these 16 X‐STR loci were explored in a Shanghai Han population from China. These loci included DXS10134, DXS10159, DXS6789, DXS6795, DXS6800, DXS6803, DXS6807, DXS6810, DXS7132, DXS7424, DXS8378, DXS9902, GATA165B12, GATA172D05, GATA31E08, and HPRTB. Samples from 591 unrelated individuals (293 males and 298 females) and 400 two‐generation families were successfully analyzed using this multiplex system. Allele frequencies and mutation rates of the 16 loci were investigated, with the comparison of allele frequency distributions among different populations performed. Polymorphism information contents of these loci were all >0.6440 except the locus DXS6800 (0.4706). Nine cases of mutations were detected in the 16 loci from the investigation of 9232 meioses. Pairwise comparisons of allele frequency distributions showed significant differences for most loci among populations from different countries and ethnic groups but not among the Han population living in other areas of China. These results suggest that the 16 X‐STR loci system provides highly informative polymorphic data for paternity testing and forensic identification in the Han population in Shanghai, China, as a complementary tool.  相似文献   

11.
Currently, two of the most widely used X‐chromosome STR (X‐STR) multiplexes are composed by ten (GHEP‐ISFG decaplex) and 12 markers (Investigator Argus X‐12 Kit). The number of markers included is a drawback for complex relative testing cases, likewise the large size of some amplicons difficult their application to degraded samples. Here, we present a new multiplex of 17 X‐STRs with the aim of increasing both the resolution power and forensic applicability. This newly proposed set includes the X‐STRs of the GHEP‐ISFG decaplex, four X‐STRs from the Investigator Argus X‐12 Kit, three of them also included in the decaplex, and six additional more. In order to ensure the allele designation, an allelic ladder was developed. The validation of the present multiplex was carried out according to the revised guidelines by the SWGDAM (Scientific Working Group on DNA Analysis Methods). A total of 488 unrelated individuals from four different continents were analyzed. The forensic efficiency evaluation showed high values of combined power of discrimination in males (≥0.999999996) and females (≥0.999999999999995) as well as combined paternity exclusion probabilities in trios (≥0.99999998) and duos (≥0.999996). The results presented herein have demonstrated that the new 17 X‐STR set constitutes a high‐resolution alternative to the current X‐STR multiplexes.  相似文献   

12.
Partial DNA profiles are often obtained from degraded forensic samples and are hard to analyze and interpret. With in‐depth studies on degraded DNA, an increasing number of forensic scientists have focused on the intrinsic structural properties of DNA. In theory, nucleosomes offer protection to the bound DNA by limiting access to enzymes. In our study, we performed large‐scale DNA sequencing on nucleosome core DNA of human leucocytes. Five nucleosome short tandem repeats (STRs) were selected (including three forensic common STRs (i.e. TPOX, TH01, and D10S1248) and two unpublished STRs (i.e. AC012568.7 and AC007160.3)). We performed a population genetic investigation and forensic genetic statistical analysis of these two unpublished loci on 108 healthy unrelated individuals of the HeBei Han population in China. We estimated the protective capabilities of five selected nucleosome loci and MiniFiler? loci with artificial degraded DNA and case samples. We also analyzed differences between sequencing results and software predicted results. Our findings showed that nucleosome STRs were more likely to be detected than MiniFiler? loci. They were well protected from degradation by nucleosomes and could be candidates for further nucleosome multiplex construction, which would increase the chances of obtaining a better balanced profile with fewer allelic drop‐outs.  相似文献   

13.
Massively parallel sequencing of forensic STRs simultaneously provides length-based genotypes and core repeat sequences as well as flanking sequence variations. Here, we report primer sequences and concentrations of a next-generation sequencing (NGS)-based in-house panel covering 28 autosomal STR loci (CSF1PO, D1GATA113, D1S1627, D1S1656, D1S1677, D2S441, D2S1776, D3S3053, D5S818, D6S474, D6S1017, D6S1043, D8S1179, D9S2157, D10S1435, D11S4463, D13S317, D14S1434, D16S539, D18S51, D18S853, D20S482, D20S1082, D22S1045, FGA, TH01, TPOX, and vWA) and the sex determinant locus Amelogenin. Preliminary evaluation experiments showed that the panel yielded intralocus- and interlocus-balanced sequencing data with a sensitivity as low as 62.5 pg input DNA. A total of 203 individuals from Yunnan Bai population were sequenced with this panel. Comparative forensic genetic analyses showed that sequence-based matching probability of this 29-plex panel reached 2.37 × 10−29, which was 23 times lower than the length-based data. Compound stutter sequences of eight STRs were compared with parental alleles. For seven loci, repeat motif insertions or deletions occurred in the longest uninterrupted repeat sequences (LUS). However, LUS and non-LUS stutters co-existed in the locus D6S474 with different sequencing depth ratios. These results supplemented our current knowledge of forensic STR stutters, and provided a sound basis for DNA mixture deconvolution.  相似文献   

14.
X‐chromosomal STRs (X‐STRs) have been used as complements of autosomal STR application in recent years. In this work, we present population genetic data of 12 X‐STRs including DXS101, DXS10159, DXS10162, DXS10164, DXS6789, DXS7133, DXS7423, DXS7424, DXS8378, DXS981, GATA165B12, and GATA31E08 loci in a sample of 231 unrelated healthy individuals from the Hui ethnic group in Ningxia Hui Autonomous Region, China. Allelic frequencies of the 12 X‐STR loci and haplotypic frequencies of the reported linkage groups (DXS7424‐DXS101 and DXS10159‐DXS10164‐DXS10162) were investigated in the group, respectively. No STR loci showed significant deviations from the Hardy–Weinberg equilibriums and no linkage disequilibriums of pairwise loci were found after Bonferroni correction, respectively. A combined power of discrimination in female individuals was 0.999999999985 and that in male individuals was 0.99999967, respectively. The combined mean exclusion chance in deficiency cases, normal trios and duo cases were 0.999934, 0.995754, and 0.999796, respectively. Significant differences were observed from 0 to 8 loci, when making comparisons between the data of Hui ethnic group and previously reported data from other 16 populations. The results indicated the new panel of 12 X‐STR loci might be useful for forensic science application.  相似文献   

15.
STR analysis is commonly used in forensic and genetic studies. STRs are currently discriminated based on size, primarily by gel- and column-based approaches. Hybridization-based approaches have the potential to allow high-throughput analysis of STRs; however, development of such approaches has been limited by the difficulty in discriminating between STRs of similar length. We have recently described several innovations to enable STR analysis using an array-based hybridization approach for high- throughput STR analysis. Here we extend that approach by incorporating the array into microspheres and adding a discriminatory branch migration displacement step. This microsphere-based platform uses Luminex xMAP technology and improves the sensitivity, selectivity, and speed of the assay. We demonstrate the feasibility, speed, and reliability of the assay for STR detection by correctly analyzing two STR loci in 20 forensic DNA samples of known STR type. The multiplex, bead-based approach provides a high-throughput and more portable STR analysis.  相似文献   

16.
Human identification and paternity testing are usually based on the study of STRs depending on their particular characteristics in the forensic investigation. In this paper, we developed a sensitive genotyping system, SiFaSTR? 23‐plex, which is able to characterize 18 expanded Combined DNA Index System STRs (D3S1358, D5S818, D2S1338, TPOX, CSF1PO, TH01, vWA, D7S820, D21S11, D10S1248, D8S1179, D1S1656, D18S51, D12S391, D19S433, D16S539, D13S317, and FGA), three highly polymorphic STRs among Chinese people (Penta D, Penta E, and D6S1043), one Y‐chromosome Indel and amelogenin using a multiplex PCR; the PCR amplified products were analyzed using the Applied Biosystems 3500 Genetic Analyzer. Full genotyping profiles were obtained using only 31.25 pg of control DNA; various case‐type specimens, as well as ten‐year‐old samples were also successfully genotyped. Additionally, in the validation studies, this multiplex was demonstrated to be human‐specific and compatible with the interference of multiple PCR inhibitors. The system also enabled the detection of mixtures, and complete profiles could be obtained at the mixed ratios of 1:1, 1:3, and 3:1. The development and validation study here illustrated that the SiFaSTR? 23‐plex system is accurate, powerful, and more sensitive than many other systems. What's more, the population data in our study not only illustrated that this 23‐plex typing system was straightforward and efficient but also expanded the Chinese STR database, which could facilitate the appropriate application of the 23 genetic markers in forensic genetics, especially in the Chinese population.  相似文献   

17.
Well‐defined estimates of mutation rates in highly polymorphic tetranucleotide STR loci are a prerequisite for human identification in genetics laboratory routines useful for civil and criminal investigations. Studying 15 autosomal STR loci of forensic interest (CSF1PO, D2S1338, D3S1358, D5S818, D7S820, D8S1179, D13S317, D16S539, D18S51, D19S433, D21S11, FGA, TH01, TPOX, and vWA), we detected 193 slippage mutations (189 one‐step and four two‐step mutations) in 148 875 parent‐child allelic transfers from 5171 paternity cases with true biological relationship (15 096 individuals; 4754 trios and 417 duos; 9925 meiosis) from the state of São Paulo, a very representative population of Brazil. The overall mutation rate was 1.3 × 10?3 and the highest rates were observed at loci vWA (2.8 × 10?3), FGA and D18S51 (2.7 × 10?3 for both), while loci TH01 and TPOX did not present any mutations. The mean slippage mutation rate of paternal origin (1.8 × 10?3) was six times higher than that observed for maternal origin (0.3 × 10?3).  相似文献   

18.
Insertion/deletion markers (InDels) become an important marker for forensic medicine because of their compatible typing techniques with STRs and lower mutation rates. Recent years, a new kind of DNA marker named Multi-InDel was reported as characterized by two or more tightly linked InDel loci within a short length of physical position, usually 200–300 nucleotides. Many pieces of research showed that Multi-InDels had excellent application values in ancestry inference and forensic medicine. Since the identical number of insertion/deletion nucleotides of the InDel markers that composing the Multi-InDel marker, the genotypes of most reported Multi-InDels could not be directly typed by capillary electrophoresis (CE) due to the lack of length discrepancy among the composing InDel sequence. In this study, we applied a typing system of 20 Multi-InDels including 41 InDels, whose genotypes could be deduced by CE and assessed their potential applications in forensic medicine. A total of 200 unrelated Chinese Han individuals and five mother-child-father trios with proven paternity with one STR locus transmission incompatibilities from Shanxi province were genotyped by the multiplex system. The results showed that a total of 70 specific alleles were observed, more than three alleles were observed in 19 loci and seven alleles were observed in one locus. The combined probability of exclusion and the combined power of discrimination were 0.992 and 0.99999999993, respectively. This study demonstrates their potential usefulness for individual identification and paternity tests. The development of Multi-InDels provided another genetic tool inherent in higher polymorphic and lower mutation rates.  相似文献   

19.
Mongolian is the eighth largest ethnic minority on Chinese population data according to the 2010 census. In the present study, we presented the first report about the allelic frequencies and forensic statistical parameters at the 21 new STRs and analyzed linkage disequilibrium of pairwise loci in the Mongolian ethnic minority, China. Hardy–Weinberg equilibrium tests demonstrated no significant deviations except for the D1S1627 locus. The cumulative power of discrimination and power of exclusion of all the loci are 0.9999999999999999992576 and 0.9999997528, respectively. The results of analysis of molecular variance showed that significant differences between the Mongolian and the other eight populations were found at 1‐9 STR loci. In population genetics, the results of principal component analysis, structure analysis, and phylogenetic reconstruction analysis indicated shorter genetic distance between the Mongolian group and the Ningxia Han. All the results suggest that the 21 new STR loci will contribute to Chinese population genetics and forensic caseworks in the Mongolian group.  相似文献   

20.
Y-chromosome, as a gender-determined biological marker, is inherited only between fathers and sons. The Y-chromosome short tandem repeats (Y-STRs) play an essential role in paternity lineage tracing as well as sexual assault cases. The Microreader Group Y Direct ID System as a six-dye multiplex amplification kit, including 53 Y-STR and one Y-Indel locus, would improve performance and aid in obtaining more information through a greater number of loci with high polymorphism. In the present study, to verify the accuracy and efficiency of the kit, developmental validation was conducted by investigating sensitivity, species specificity, PCR inhibition, male–male and male–female mixtures, and reproducibility. The kit was tested using 311 male samples from Han and Qiang populations in Sichuan Province. The results showed that this kit had fairly high power for forensic discrimination (Han: haplotype diversity [HD] = 1, Qiang: HD = 0.999944). Additionally, 44 confirmed father–son pairs were also genotyped, among which 69 distinct haplotypes could be obtained. These father–son pairs cannot be distinguished by commonly used Y-STR panels, indicating that adding these extra Y-STRs to a single panel can achieve better discrimination performance. Collectively, the Microreader Group Y Direct ID System is robust and informative for forensic applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号