首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel, efficient, and practical method for the synthesis of imidazopyridine derivatives has been developed through the copper‐catalyzed aerobic oxidative C? H functionalization of substituted pyridines with N‐(alkylidene)‐4H‐1,2,4‐triazol‐4‐amines. The procedure occurs by cleavage of the N? N bond in the N‐(alkylidene)‐4H‐1,2,4‐triazol‐4‐amines and activation of an aryl C? H bond in the substituted pyridines. This is the first example of the preparation of imidazopyridine derivatives by using pyridines as the substrates by transition‐metal‐catalyzed C? H functionalization. This method should provide a novel and efficient strategy for the synthesis of other nitrogen heterocycles.  相似文献   

2.
Radical C?H bond functionalization provides a versatile approach for elaborating heterocyclic compounds. The synthetic design of this transformation relies heavily on the knowledge of regioselectivity, while a quantified and efficient regioselectivity prediction approach is still elusive. Herein, we report the feasibility of using a machine learning model to predict the transition state barrier from the computed properties of isolated reactants. This enables rapid and reliable regioselectivity prediction for radical C?H bond functionalization of heterocycles. The Random Forest model with physical organic features achieved 94.2 % site accuracy and 89.9 % selectivity accuracy in the out‐of‐sample test set. The prediction performance was further validated by comparing the machine learning results with additional substituents, heteroarene scaffolds and experimental observations. This work revealed that the combination of mechanism‐based computational statistics and machine learning model can serve as a useful strategy for selectivity prediction of organic transformations.  相似文献   

3.
Nitrogen‐containing heterocycles have found remarkable applications in natural product research, material sciences, and pharmaceuticals. Although the synthesis of this interesting class of compounds attracted the interest of generations of organic chemists, simple and straightforward assembly methods based on transition‐metal catalysis have regularly been elusive. The recent advancements in the development of C?H functionalization have helped in accomplishing the synthesis of a variety of complex heterocycles from simple precursors. This Focus Review summarizes the recent advances in one particular field: the copper‐catalyzed C?N bond formation reactions via C?H bond functionalization to furnish a comprehensive range of nitrogen heterocycles. Applicability and synthetic feasibility of a particular reaction represent major requirements for the inclusion in this review.  相似文献   

4.
Undirected C(sp3)?H functionalization reactions often follow site‐selectivity patterns that mirror the corresponding C?H bond dissociation energies (BDEs). This often results in the functionalization of weaker tertiary C?H bonds in the presence of stronger secondary and primary bonds. An important, contemporary challenge is the development of catalyst systems capable of selectively functionalizing stronger primary and secondary C?H bonds over tertiary and benzylic C?H sites. Herein, we report a Cu catalyst that exhibits a high degree of primary and secondary over tertiary C?H bond selectivity in the amidation of linear and cyclic hydrocarbons with aroyl azides ArC(O)N3. Mechanistic and DFT studies indicate that C?H amidation involves H‐atom abstraction from R‐H substrates by nitrene intermediates [Cu](κ2N,O‐NC(O)Ar) to provide carbon‐based radicals R. and copper(II)amide intermediates [CuII]‐NHC(O)Ar that subsequently capture radicals R. to form products R‐NHC(O)Ar. These studies reveal important catalyst features required to achieve primary and secondary C?H amidation selectivity in the absence of directing groups.  相似文献   

5.
A new strategy has been developed for the oxidant‐ and base‐free dehydrogenative coupling of N‐heterocycles at mild conditions. Under the action of an iridium catalyst, N‐heterocycles undergo multiple sp3 C? H activation steps, generating a nucleophilic enamine that reacts in situ with various electrophiles to give highly functionalized products. The dehydrogenative coupling can be cascaded with Friedel–Crafts addition, resulting in a double functionalization of the N‐heterocycles.  相似文献   

6.
Predictability is a key requirement to encompass late‐stage C?H functionalization in synthetic routes. However, prediction (and control) of reaction selectivity is usually challenging, especially for complex substrate structures and elusive transformations such as remote C(sp3)?H oxidation, as it requires distinguishing a specific C?H bond from many others with similar reactivity. Developed here is a strategy for predictable, remote C?H oxidation that entails substrate binding to a supramolecular Mn or Fe catalyst followed by elucidation of the conformation of the host‐guest adduct by NMR analysis. These analyses indicate which remote C?H bonds are suitably oriented for the oxidation before carrying out the reaction, enabling prediction of site selectivity. This strategy was applied to late‐stage C(sp3)?H oxidation of amino‐steroids at C15 (or C16) positions, with a selectivity tunable by modification of catalyst chirality and metal.  相似文献   

7.
Regio‐ and stereoselective distal allylic/benzylic C?H functionalization of allyl and benzyl silyl ethers was achieved using rhodium(II) carbenes derived from N‐sulfonyltriazoles and aryldiazoacetates as carbene precursors. The bulky rhodium carbenes led to highly site‐selective functionalization of less activated allylic and benzylic C?H bonds even in the presence of electronically preferred C?H bonds located α to oxygen. The dirhodium catalyst Rh2(S‐NTTL)4 is the most effective chiral catalyst for triazole‐derived carbene transformations, whereas Rh2(S‐TPPTTL)4 works best for carbenes derived from aryldiazoacetates. The reactions afford a variety of δ‐functionalized allyl silyl ethers with high diastereo‐ and enantioselectivity. The utility of the present method was demonstrated by its application to the synthesis of a 3,4‐disubstituted l ‐proline scaffold.  相似文献   

8.
Described is a new hydrazone‐based exo‐directing group (DG) strategy developed for the functionalization of unactivated primary β C?H bonds of aliphatic amines. Conveniently synthesized from protected primary amines, the hydrazone DGs are shown to site‐selectively promote the β‐acetoxylation and tosyloxylation via five‐membered exo‐palladacycles. Amines with a wide scope of skeletons and functional groups are tolerated. Moreover, the hydrazone DG can be readily removed, and a one‐pot C?H acetoxylation/DG removal protocol was also discovered.  相似文献   

9.
Compared to the most popular directing‐group‐assisted strategy, the “undirected” strategy for C−H bond functionalization represents a more flexible but more challenging approach. Reported herein is a gold‐catalyzed highly site‐selective C(sp2)−H alkylation of unactivated arenes with 2,2,2‐trifluoroethyl α‐aryl‐α‐diazoesters. This protocol demonstrates that high site‐selective C−H bond functionalization can be achieved without the assistance of a directing group. In this transformation, both the gold catalyst and trifluoroethyl group on the ester of the diazo compound play vital roles for achieving the chemo‐ and regioselectivity.  相似文献   

10.
Enamides are stable enamine surrogates and provide key intermediates for the synthesis of small but complex nitrogen‐containing compounds. Metal‐catalyzed regioselective functionalization of enamides provides a rapid method to synthesize useful nitrogen containing heterocycles. This review discloses the recent progress made in the development of the C?H functionalization of enamides involving efficient and atom‐economical routes. Syntheses of different heterocycles are classified based on the site reactivity of enamides and key mechanistic insights are given for each transformation.  相似文献   

11.
A general and practical strategy for remote site‐selective functionalization of unactivated aliphatic C?H bonds in various amides by radical chemistry is introduced. C?H bond functionalization is achieved by using the readily installed N‐allylsulfonyl moiety as an N‐radical precursor. The in situ generated N‐radical engages in intramolecular 1,5‐hydrogen atom transfer to generate a translocated C radical which is subsequently trapped with various sulfone reagents to afford the corresponding C?H functionalized amides. The generality of the approach is documented by the successful remote C?N3, C?Cl, C?Br, C?SCF3, C?SPh, and C?C bond formation. Unactivated tertiary and secondary C?H bonds, as well as activated primary C?H bonds, can be readily functionalized by this method.  相似文献   

12.
The chemical functionalization of hydrogenated graphene can modify its physical properties and lead to better processability. Herein, we describe the chemical functionalization of hydrogenated graphene through a dehydrogenative cross‐coupling reaction between an allylic C?H bond and the α‐C?H bond of tetrahydrothiophen‐3‐one using Cu(OTf)2 as the catalyst and DDQ as the oxidant. The chemical functionalization was confirmed by X‐ray photoelectron spectroscopy and Fourier transform infrared spectroscopy and visualized by scanning electron microscopy. The functionalized hydrogenated graphene material demonstrated improved dispersion stability in water, bringing new quality to the elusive hydrogenated graphene (graphane) materials. Hydrogenated graphene provides broad possibilities for chemical modifications owing to its reactivity.  相似文献   

13.
Cationic ruthenium(II) complexes enabled oxidative alkenylations of phenols bearing easily cleavable directing groups. The optimized catalytic system allowed twofold C? H bond activations with excellent chemo‐, site‐, and diastereoselectivities. The double C? H functionalization process proceeded efficiently in an aerobic fashion under an atmosphere of ambient air. Detailed mechanistic studies were performed and provided strong support for an initial reversible C? H bond activation by the formation of six‐membered ruthenacycles as the key intermediates.  相似文献   

14.
Direct transformation of carbon–hydrogen bond (C–H) has emerged to be a trend for construction of molecules from building blocks with no or less prefunctionalization, leading high atom and step economy. Directing group (DG) strategy is widely used to achieve higher reactivity and selectivity, but additional steps are usually needed for installation and/or cleavage of DGs, limiting step economy of the overall transformation. To meet this challenge, we proposed a concept of automatic DG (DGauto), which is auto‐installed and/or auto‐cleavable. Multifunctional oxime and hydrazone DGauto were designed for C–H activation and alkyne annulation to furnish diverse nitrogen‐containing heterocycles. Imidazole was employed as an intrinsic DG (DGin) to synthesize ring‐fused and π‐extended functional molecules. The alkyne group in the substrates can also be served as DGin for ortho‐C–H activation to afford carbocycles. In this account, we intend to give a review of our progress in this area and brief introduction of other related advances on C–H functionalization using DGauto or DGin strategies.  相似文献   

15.
C7?H‐functionalized indoles are ubiquitous structural units of biological and pharmaceutical compounds for numerous antiviral agents against SARS‐CoV or HIV‐1. Thus, achieving site‐selective functionalizations of the C7?H position of indoles, while discriminating among other bonds, is in high demand. Herein, we disclose site‐selective C7?H activations of indoles by ruthenium(II) biscarboxylate catalysis under mild conditions. Base‐assisted internal electrophilic‐type substitution C?H ruthenation by weak O‐coordination enabled the C7?H functionalization of indoles and offered a broad scope, including C?N and C?C bond formation. The versatile ruthenium‐catalyzed C7?H activations were characterized by gram‐scale syntheses and the traceless removal of the directing group, thus providing easy access to pharmaceutically relevant scaffolds. Detailed mechanistic studies through spectroscopic and spectrometric analyses shed light on the unique nature of the robust ruthenium catalysis for the functionalization of the C7?H position of indoles.  相似文献   

16.
Expanding the toolbox of C?H functionalization reactions applicable to the late‐stage modification of complex molecules is of interest in medicinal chemistry, wherein the preparation of structural variants of known pharmacophores is a key strategy for drug development. One manifold for the functionalization of aromatic molecules utilizes diazo compounds and a transition‐metal catalyst to generate a metallocarbene species, which is capable of direct insertion into an aromatic C?H bond. However, these high‐energy intermediates can often require directing groups or a large excess of substrate to achieve efficient and selective reactivity. Herein, we report that arene cation radicals generated by organic photoredox catalysis engage in formal C?H functionalization reactions with diazoacetate derivatives, furnishing sp2–sp3 coupled products with moderate‐to‐good regioselectivity. In contrast to previous methods utilizing metallocarbene intermediates, this transformation does not proceed via a carbene intermediate, nor does it require the presence of a transition‐metal catalyst.  相似文献   

17.
The C?H alkylation of aniline derivatives with both primary and secondary alkyl halides was achieved with a versatile nickel catalyst of a vicinal diamine ligand. Step‐economic access to functionalized 2‐pyrimidyl anilines, key structural motifs in anticancer drugs, is thus provided. The C?H functionalization proceeded through facile C?H activation and SET‐type C?X bond cleavage with the assistance of a monodentate directing group, which could be removed in a traceless fashion.  相似文献   

18.
Expedient C? H aminocarbonylations of unactivated (hetero)arenes and alkenes were accomplished with a cobalt(III) catalyst that shows high functional group tolerance. The C? H functionalization occurred with excellent chemo‐, site‐, and diastereoselectivity and enabled step‐economical reactions with isocyanates or acyl azides.  相似文献   

19.
Enantioselective construction of axially chiral biaryls by direct C? H bond functionalization reactions has been realized. Novel axially chiral biaryls were synthesized by the direct C? H bond olefination of biaryl compounds, using a chiral [Cp*RhIII] catalyst, in good to excellent yields and enantioselectivities. The obtained axially chiral biaryls were found as suitable ligands for rhodium‐catalyzed asymmetric conjugate additions.  相似文献   

20.
Despite recent advances, reactivity and site‐selectivity remain significant obstacles for the practical application of C(sp3)?H bond functionalization methods. Here, we describe a system that combines a salicylic‐aldehyde‐derived L,X‐type directing group with an electron‐deficient 2‐pyridone ligand to enable the β‐methylene C(sp3)?H arylation of aliphatic alcohols, which has not been possible previously. Notably, this protocol is compatible with heterocycles embedded in both alcohol substrates and aryl coupling partners. A site‐ and stereo‐specific annulation of dihydrocholesterol and the synthesis of a key intermediate of englitazone illustrate the practicality of this method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号