首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 559 毫秒
1.
The search for main‐group element‐based radicals is one of the main research topics in contemporary chemistry because of their fascinating chemical and physical properties. The Group 15 element‐centered radicals mainly feature a V‐shaped two coordinate structure, with a couple of radical cations featuring trigonal tricoordinated geometry. Now, nontrigonal compounds R3E (E=P, As, Sb) were successfully synthesized by introducing a new rigid tris‐amide ligand. The selective one‐electron reduction of R3E afforded the first stable tricoordinate pnictogen‐centered radical anion salts; the pnictogen atoms retain planar T‐shaped structures. EPR spectroscopy and calculations reveal that the spin density mainly resides at the p orbitals of the pnictogen atoms, which is perpendicular to the N3E planes.  相似文献   

2.
Amphiphilic H‐shaped [poly(ethylene oxide)]3‐polystyrene‐[poly(ethylene oxide)]3(PEO3‐PS‐PEO3) copolymer was synthesized by 2‐methyl‐2‐nitrosopropane (MNP) induced single electron transfer nitroxide radical coupling (SETNRC) using PEO3‐(PS‐Br) as a single precursor. First, the A3B star‐shaped precursor PEO3‐(PS‐Br) was synthesized by atom transfer radical polymerization (ATRP) using three‐arm star‐shaped PEO3‐Br as macro‐initiator. Then, in the presence of Cu(I)Br/Me6TREN, the bromide group at PS end was sequentially transferred into carbon‐centered radical by single electron transfer and then nitroxide radical by reacting with MNP in mixed solvents of dimethyl sulfoxide (DMSO)/tetrahydrofuran (THF), and in situ generated nitroxide radical could again capture another carbon‐centered radical by fast SETNRC to form target PEO3‐PS‐PEO3 copolymer. The MNP induced SETNRC could reach to a high efficiency of 90% within 60 min. After the product PEO3‐PS‐PEO3 was cleaved by ascorbic acid, the SEC results showed that there was about 30% fraction of product formed by single electron transfer radical coupling (SETRC) between carbon‐centered radicals. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

3.
Singlet cyclo‐1,3‐dipnicta‐2,4‐diazane‐1,3‐diyls of the type [E(μ‐NTer)2E] ( 2 , E=P, As, Ter=2,6‐dimesitylphenyl) can undergo a one‐electron‐oxidation utilizing silver salts of weakly coordinating anions such as [AgLn][B(C6F5)4] (L=donor solvents) to afford the novel cyclic radical cations, [E(μ‐NTer)2E]+. ( 3 +.). When smaller and more basic anions were employed in the reaction, the anions were found to form covalent bonds to the radical centers yielding dipnictadiazanes, [FP(μ‐NTer)2PF] ( 5 ) and [(CF3CO2)P(μ‐NTer)2P(CF3CO2)] ( 6 ). A two‐electron oxidation process, resulting in the formation of dications of the type [E(μ‐NTer)2E]2+, could not be observed. Computational and EPR data revealed that the spin density is almost completely localized at the two heavier pnictogen centers E of the former 1,3‐dipnictadiazane‐1,3‐diyls. The bonding situation in the radical cations features a rare example of a transannular one‐electron π bond without having a σ bond.  相似文献   

4.
CBS-Q and G3 methods were used to generate a large number of reliable Si--H, P---H and S--H bond dissociation energies (BDEs) for the first time. It was found that the Si--H BDE displayed dramatically different substituent effects compared with the C--H BDE. On the other hand, the P---H and S--H BDE exhibited patterns of substituent effects similar to those of the N--H and O--H BDE. Further analysis indicated that increasing the positive charge on Si of XSiH3 would strengthen the Si--H bond whereas increasing the positive charge on P and S of XPH2 and XSH would weaken the P---H and S--H bonds. Meanwhile, increasing the positive charge on Si of XSiH2^+ stabilized the silyl radical whereas increasing the positive charge on P and S in XPH" and XS* destabilized P- and S-centered radicals. These behaviors could be reasonalized by the fact that Si is less electronegative than H while P and S are not. Finally, it was demonstrated that the spin-delocalization effect was valid for the Si-, P- and S-centered radicals.  相似文献   

5.
One‐electron oxidation of 1,4,2,5‐diazadiborinine 1 has been studied. While the reaction of 1 a bearing phenyl groups on the B atoms with AgAl{OC(CF3)3}4 afforded a complex mixture, the same oxidation reaction with 1 b featuring bulky mesityl substituents on the B atoms rendered the corresponding cation radical 2 b as an isolable species. X‐ray diffraction analysis, EPR spectroscopy, and DFT calculations of 2 b revealed the delocalization of the unpaired electron over the entire π‐system of 2 b , as well as a large spin density (0.76 in total) on the two equivalent boron atoms. The chemical trapping reaction of 2 b with p‐benzoquinone and triphenyltin hydride afforded the dicationic species 3 containing two newly formed B?O bonds and the monocationic product 2b‐H containing a B?H bond, respectively, thus confirming the boron‐centered radical reactivity of 2 b .  相似文献   

6.
The hydroxycyclohexadienyl peroxy radicals (HO? C6H6? O2) produced from the reaction of OH‐benzene adduct with O2 were studied with density functional theory (DFT) calculations to determine their characteristics. The optimized geometries, vibrational frequencies, and total energies of 2‐hydroxycyclohexadienyl peroxy radical IIs and 4‐hydroxycyclohexadienyl peroxy radical IIIs were calculated at the following theoretical levels, B3LYP/6‐31G(d), B3LYP/6‐311G(d,p), and B3LYP/6‐311+G(d,p). Both were shown to contain a red‐shifted intramolecular hydrogen bond (O? H … O? H bond). According to atoms‐in‐molecules (AIM) analysis, the intramolecular hydrogen bond in the 2‐hydroxycyclohexadienyl peroxy radical IIs is stronger than that one in 4‐hydroxycyclohexadienyl peroxy radical IIIs, and the former is the most stable conformation among its isomers. Generally speaking, hydrogen bonding in these radicals plays an important role to make them more stable. Based on natural bond orbital (NBO) analysis, the stabilization energy between orbitals is the main factor to produce red‐shifted intramolecular hydrogen bond within these peroxy radicals. The hyperconjugative interactions can promote the transfer of some electron density to the O? H antibonding orbital, while the increased electron density in the O? H antibonding orbital leads to the elongation of the O? H bond and the red shift of the O? H stretching frequency. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

7.
Masked alcohols are particularly appealing as directing groups because of the ubiquity of hydroxy groups in organic small molecules. Herein, we disclose a general strategy for aliphatic γ‐C(sp3)?H functionalization guided by a masked alcohol. Specifically, we determine that sulfamate ester derived nitrogen‐centered radicals mediate 1,6‐hydrogen‐atom transfer (HAT) processes to guide γ‐C(sp3)?H chlorination. This reaction proceeds through a light‐initiated radical chain‐propagation process and is capable of installing chlorine atoms at primary, secondary, and tertiary centers.  相似文献   

8.
Four Ln(III) complexes based on a new nitronyl nitroxide radical have been synthesized and structurally characterized: {Ln(hfac)3[NITPh(MeO)2]2} (Ln = Eu( 1 ), Gd( 2 ), Tb( 3 ), Dy( 4 ); NITPh(MeO)2 = 2‐(3′,4′‐dimethoxyphenyl)‐4,4,5,5‐tetramethylimidazoline‐1‐oxyl‐3‐oxide; hfac = hexafluoroacetylacetonate). The single‐crystal X‐ray diffraction analysis shows that these complexes have similar mononuclear trispin structures, in which central Ln(III) ion is eight‐coordinated by two O‐atoms from two nitroxide groups and six O‐atoms from three hfac anions. The variable temperature magnetic susceptibility study reveals that there exist ferromagnetic interactions between Gd(III) and the radicals, and antiferromagnetic interactions between two radicals (JGd‐Rad = 3.40 cm?1, JRad‐Rad = ?9.99 cm?1) in complex 2 . Meanwhile, antiferromagnetic interactions are estimated between Eu(III) (or Dy(III)) and radicals in complexes 1 and 4 , and ferromagnetic interaction between Tb(III) and radicals in complex 3 , respectively.  相似文献   

9.
Photooxidation of alkanes by dioxygen occurred under visible light irradiation of 2,3‐dichloro‐5,6‐dicyano‐p‐benzoquinone (DDQ) which acts as a super photooxidant. Solvent‐free hydroxylation of cyclohexane and alkanes is initiated by electron transfer from alkanes to the singlet and triplet excited states of DDQ to afford the corresponding radical cations and DDQ??, as revealed by femtosecond laser‐induced transient absorption measurements. Alkane radical cations readily deprotonate to produce alkyl radicals, which react with dioxygen to afford alkylperoxyl radicals. Alkylperoxyl radicals abstract hydrogen atoms from alkanes to yield alkyl hydroperoxides, accompanied by regeneration of alkyl radicals to constitute the radical chain reactions, so called autoxidation. The radical chain is terminated in the bimolecular reactions of alkylperoxyl radicals to yield the corresponding alcohols and ketones. DDQ??, produced by the photoinduced electron transfer from alkanes to the excited state of DDQ, disproportionates with protons to yield DDQH2.  相似文献   

10.
Gas‐phase oxidation routes of biogenic emissions, mainly isoprene and monoterpenes, in the atmosphere are still the subject of intensive research with special attention being paid to the formation of aerosol constituents. This laboratory study shows that the most abundant monoterpenes (limonene and α‐pinene) form highly oxidized RO2 radicals with up to 12 O atoms, along with related closed‐shell products, within a few seconds after the initial attack of ozone or OH radicals. The overall process, an intramolecular ROO→QOOH reaction and subsequent O2 addition generating a next R′OO radical, is similar to the well‐known autoxidation processes in the liquid phase (QOOH stands for a hydroperoxyalkyl radical). Field measurements show the relevance of this process to atmospheric chemistry. Thus, the well‐known reaction principle of autoxidation is also applicable to the atmospheric gas‐phase oxidation of hydrocarbons leading to extremely low‐volatility products which contribute to organic aerosol mass and hence influence the aerosol–cloud–climate system.  相似文献   

11.
The polymerization of N‐methyl‐α‐fluoroacrylamide (NMFAm) initiated with dimethyl 2,2′‐azobisisobutyrate (MAIB) in benzene was studied kinetically and with electron spin resonance. The polymerization proceeded heterogeneously with the highly efficient formation of long‐lived poly(NMFAm) radicals. The overall activation energy of the polymerization was 111 kJ/mol. The polymerization rate (Rp) at 50 °C is given by Rp = k[MAIB]0.75±0.05 [NMFAm]0.44±0.05. The concentration of the long‐lived polymer radical increased linearly with time. The formation rate (Rp?) of the long‐lived polymer radical at 50 °C is expressed by Rp? = k[MAIB]1.0±0.1 [NMFAm]0±0.1. The overall activation energy of the long‐lived radical formation was 128 kJ/mol, which agreed with the energy of initiation (129 kJ/mol), which was separately estimated. A comparison of Rp? with the initiation rate led to the conclusion that 1‐methoxycarbonyl‐1‐methylethyl radicals (primary radicals from MAIB), escaping from the solvent cage, were quantitatively converted into the long‐lived poly(NMFAm) radicals. Thus, this polymerization involves completely unimolecular termination due to polymer radical occlusion. 1H NMR‐determined tacticities of resulting poly(NMFAm) were estimated to be rr = 0.34, mr = 0.48, and mm = 0.18. The copolymerization of NMFAm(M1) and St(M2) with MAIB at 50 °C in benzene gave monomer reactivity ratios of r1 = 0.61 and r2 = 1.79. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2196–2205, 2001  相似文献   

12.
Summary: A novel method for measuring termination rate coefficients, kt, in free‐radical polymerization is presented. A single laser pulse is used to instantaneously produce photoinitiator‐derived radicals. During subsequent polymerization, radical concentration is monitored by time‐resolved electron spin resonance (ESR) spectroscopy. The size of the free radicals, which exhibits a narrow distribution increases linearly with time t, which allows the chain‐length dependence of kt to be deduced. The method will be illustrated using dodecyl methacrylate polymerization as an example.

Two straight lines provide a very satisfactory representation of the chain‐length dependence of kt over the entire chain‐length region (cR = radical concentration).  相似文献   


13.
The results of the thermolysis of 1:2 adducts of stable group-14 element divalent compounds [R2M:, R2=1,1,4,4-tetrakis(trimethylsilyl)butane-1,4-diyl; 1b, M=Ge; 1c, M=Sn] to TEMPO radical are discussed in detail. Whereas the thermal reactions of the 1:2 adducts [R2M(OR)2, R=2,2,6,6-tetramethylpiperidin-N-yl; 3b, M=Ge; 3c, M=Sn] are understood to proceed by the initial homolysis of an M-O bond to give the corresponding aminoxy-substituted group-14 element radicals [R2(RO)M; 2b, M=Ge; 2c, M=Sn] and TEMPO, the subsequent reactions of 2b and 2c were remarkably different to each other; 2b favors the N-O bond fission (path b) to give the corresponding germanone, while 2c prefers the M-O bond fission (path a) to give stannylene (1c). In combining with our previous results for aminoxysilyl radical (2a) [R2(RO)Si], the origin of the remarkable differences in the reactivity among group-14 element radicals 2a-2c is discussed on the basis of the theoretical calculations for model reactions.Improved syntheses of the precursor dichlorogermane and dichlorostannane of germylene (1b) and stannylene (1c), respectively, are described in Section 3.  相似文献   

14.
Aerobic oxidation of toluene (PhCH3) is investigated by complementary experimental and theoretical methodologies. Whereas the reaction of the chain‐carrying benzylperoxyl radicals with the substrate produces predominantly benzyl hydroperoxide, benzyl alcohol and benzaldehyde originate mainly from subsequent propagation of the hydroperoxide product. Nevertheless, a significant fraction of benzaldehyde is also produced in primary PhCH3 propagation, presumably via proton rather than hydrogen transfer. An equimolar amount of benzyl alcohol, together with benzoic acid, is additionally produced in the tertiary propagation of PhCHO with benzylperoxyl radicals. The “hot” oxy radicals generated in this step can also abstract aromatic hydrogen atoms from PhCH3, and this results in production of cresols, known inhibitors of radical‐chain reactions. The very fast benzyl peroxyl‐initiated co‐oxidation of benzyl alcohol generates HO2. radicals, along with benzaldehyde. This reaction also causes a decrease in the overall oxidation rate, due to the fast chain‐terminating reaction of HO2. with the benzylperoxyl radicals, which causes a loss of chain carriers. Moreover, due to the fast equilibrium PhCH2OOH+HO2.?PhCH2OO.+H2O2, and the much lower reactivity of H2O2 compared to PhCH2OOH, the fast co‐oxidation of the alcohol means that HO2. gradually takes over the role of benzylperoxyl as principal chain carrier. This drastically changes the autoxidation mechanism and, among other things, causes a sharp decrease in the hydroperoxide yield.  相似文献   

15.
Benzyl alcohol (BA) is present in indoor atmospheres, where it reacts with OH radicals and undergoes further oxidation. A theoretical study is carried out to elucidate the reaction mechanism and to identify the main products of the oxidation of BA that is initiated by OH radicals. The reaction is found to proceed by H‐abstraction from the CH2 group (25 %) and addition to the ipso (60 %) and ortho (15 %) positions of the aromatic ring. The BA–OH adducts react further with O2 via the bicyclic radical intermediates—the same way as for benzene—forming mainly 3‐hydroxy‐2‐oxopropanal and butenedial. If NOx is low, the bicyclic peroxy radicals undergo intramolecular H‐migration, forming products containing OH, OOH, and CH2OH/CHO functional groups, and contribute to secondary organic aerosol (SOA) formation.  相似文献   

16.
A persistent perfluoroalkyl radical (PPFR), perfluoro‐3‐ethyl‐2,4‐dimethyl‐3‐pentyl, is shown to be a good source of •CF3 radicals and a useful radical capable of initiating the polymerization of vinylidene fluoride (VDF). NMR characterizations of the resulting PVDF homopolymers showed that polymerization of VDF was exclusively initiated by •CF3 radicals. The addition of •CF3 radical onto VDF was regioselective leading to CF3‐CH2‐CF2‐PVDF and the CF3 end‐group acted as an efficient label to assess the molecular weights by 19F NMR spectroscopy. Various [PPFR]0/[VDF]0 initial molar ratios lead to CF3–PVDF–CF3 of different molecular weights. When that ratio decreased, both the molecular weights and the thermostability of these PVDFs increased, showing less defects of chaining and higher crystallinity.  相似文献   

17.
Nitrogen‐centered urazole radicals exist in equilibrium with tetrazane dimers in solution. The equilibrium established typically favors the free‐radical form. However, 1‐arylurazole radicals bearing substituents at the ortho position favor the dimeric form. We were able to determine the structure of one of the dimers (substituted at both ortho positions with methyl groups), namely 1,2‐(2,4‐dimethylphenyl)‐2‐[2‐(2,4‐dimethylphenyl)‐4‐methyl‐3,5‐dioxo‐1,2,4‐triazolidin‐1‐yl]‐4‐methyl‐1,2,4‐triazolidine‐3,5‐dione, C24H28N6O4, via X‐ray crystallography. The experimentally determined structure agreed well with the computationally obtained geometry at the B3LYP/6‐311G(d,p) level of theory. The preferred syn conformation of these 1‐arylurazole dimers results in the two aromatic rings being proximate and nearly parallel, which leads to some interesting shielding effects of certain signals in the 1H NMR spectrum. Armed with this information, we were able to decipher the more complicated 1H NMR spectrum obtained from a dimer that was monosubstituted at the ortho position with a methyl group.  相似文献   

18.
Despite the fundamental importance of radical‐anion radical‐cation pairs in single‐electron transfer (SET) reactions, such species are still very rare and transient in nature. Since diborenes have highly electron‐rich B? B double bonds, which makes them strong neutral reductants, we envisaged a possible realization of a boron‐centered radical‐anion radical‐cation pair by SET from a diborene to a borole species, which are known to form stable radical anions upon one‐electron reduction. However, since the reduction potentials of all know diborenes (E1/2=?1.05/?1.55 V) were not sufficiently negative to reduce MesBC4Ph4 (E1/2=?1.69 V), a suitable diborene, IiPr?(iPr)B?B(iPr)?IiPr, was tailor‐made to comply with these requirements. With a halfwave potential of E1/2=?1.95 V, this diborene ranks amongst the most powerful neutral organic reductants known and readily reacted with MesBC4Ph4 by SET to afford a stable boron‐centered radical‐anion radical‐cation pair.  相似文献   

19.
Reported herein is the use of S‐perfluoroalkyl sulfilimino iminiums as a new source of RF radicals under visible‐light photoredox catalysis (RF=CF3, C4F9, CF2Br, CFCl2). These shelf‐stable perfluoroalkyl reagents, readily prepared on gram scale from the corresponding sulfoxide using a one‐pot procedure, allow the efficient photoredox‐induced oxyperfluoroalkylation of various alkenes using fac‐Ir(ppy)3 as the photocatalyst. Importantly, spin‐trapping/electron paramagnetic resonance experiments were carried out to characterize all the radical intermediates involved in this radical/cationic process.  相似文献   

20.
Density functional theory B3LYP with 6-31G* basis set has been used to investigate the geometries, rotational constants, dipole moments, energy gaps and vibrational frequencies of nine series of isomers of C20H3 radical. The result shows that the bowl-like structure with C1 symmetry is the most stable structure, in which the three hydrogen atoms locate on the edge carbon atoms, and the two hydrogen atoms are neighbouring and the other one has a two- carbon atom interval to the neighbouring hydrogen. In addition, the relationship between the energy and the position of one hydrogen atom from end to middle on the linear structures of C20H3 radical with two hydrogens atoms located on two ends was obtained, which shows the energy increase monotonously. Furthermore, hydrogenation can relax the strain and make the isomer of C20 more stable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号