首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
This paper is concerned with interval general bidirectional associative memory (BAM) neural networks with proportional delays. Using appropriate nonlinear variable transformations, the interval general BAM neural networks with proportional delays can be equivalently transformed into the interval general BAM neural networks with constant delays. The sufficient condition for the existence and uniqueness of equilibrium point of the model is established by applying Brouwer's fixed point theorem. By constructing suitable delay differential inequalities, some sufficient conditions for the global exponential stability of the model are obtained. Two examples are given to illustrate the effectiveness of the obtained results. This paper ends with a brief conclusion. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
Some sufficient conditions are obtained for the existence and global exponential stability of a periodic solution to the general bidirectional associative memory (BAM) neural networks with distributed delays by using the continuation theorem of Mawhin's coincidence degree theory and the Lyapunov functional method and the Young's inequality technique. These results are helpful for designing a globally exponentially stable and periodic oscillatory BAM neural network, and the conditions can be easily verified and be applied in practice. An example is also given to illustrate our results.  相似文献   

4.
In this paper, by utilizing the Lyapunov functionals, the analysis method and the impulsive control, we analyze the exponential stability of Hopfield neural networks with time‐varying delays. A new criterion on the exponential stabilization by impulses and the exponential stabilization by periodic impulses is gained. We can see that impulses do contribution to the system's exponential stability. Two examples are given to illustrate the effectiveness of our result. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
In this article, an exponential stability analysis of Markovian jumping stochastic bidirectional associative memory (BAM) neural networks with mode‐dependent probabilistic time‐varying delays and impulsive control is investigated. By establishment of a stochastic variable with Bernoulli distribution, the information of probabilistic time‐varying delay is considered and transformed into one with deterministic time‐varying delay and stochastic parameters. By fully taking the inherent characteristic of such kind of stochastic BAM neural networks into account, a novel Lyapunov‐Krasovskii functional is constructed with as many as possible positive definite matrices which depends on the system mode and a triple‐integral term is introduced for deriving the delay‐dependent stability conditions. Furthermore, mode‐dependent mean square exponential stability criteria are derived by constructing a new Lyapunov‐Krasovskii functional with modes in the integral terms and using some stochastic analysis techniques. The criteria are formulated in terms of a set of linear matrix inequalities, which can be checked efficiently by use of some standard numerical packages. Finally, numerical examples and its simulations are given to demonstrate the usefulness and effectiveness of the proposed results. © 2014 Wiley Periodicals, Inc. Complexity 20: 39–65, 2015  相似文献   

6.
This paper deals with the problem of global exponential stability for bidirectional associate memory (BAM) neural networks with time-varying delays and reaction-diffusion terms. By using some inequality techniques, graph theory as well as Lyapunov stability theory, a systematic method of constructing a global Lyapunov function for BAM neural networks with time-varying delays and reaction-diffusion terms is provided. Furthermore, two different kinds of sufficient principles are derived to guarantee the exponential stability of BAM neural networks. Finally, a numerical example is carried out to demonstrate the effectiveness and applicability of the theoretical results.  相似文献   

7.
This paper is concerned with neutral bidirectional associative memory neural networks with time‐varying delays in leakage terms on time scales. Some sufficient conditions on the existence, uniqueness, and global exponential stability of almost‐periodic solutions are established. An example is presented to illustrate the feasibility and effectiveness of the obtained results. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
This paper investigates the Lagrange global exponential stability of the quaternion-valued memristive neural networks (QVMNNs). Two kinds of activation functions based on different assumptions are considered. Then, based on the Lyapunov function approach, decomposition method, and some inequality skills, two novel sufficient conditions for lagrange stability of QVMNNs are provided corresponding to different types of activation functions. Lastly, simulation examples are provided to demonstrate the correctness of our theoretical results.  相似文献   

9.
In this work, a new criterion concerning the global exponential stability of impulsive neural networks with time‐varying delays is presented by employing the impulsive delayed differential inequality method. The criterion is independent of the time‐varying delays and does not require the differentiability of delay functions. An example and its simulation showing the effectiveness of the present criterion is given finally. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
In this paper, based on the topological degree theory, Lyapunov functional method and inequality analysis technique, the existence and global exponential stability of equilibrium of impulsive fuzzy Cohen–Grossberg bi‐directional associative memory neural networks with delays, are investigated. Moreover, an illustrative example is given to demonstrate the effectiveness of the results obtained. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
In this paper, dynamical behaviors of Hopfield neural networks system with distributed delays were studied. By using contraction mapping principle and differential inequality technique, a sufficient condition was obtained to ensure the existence uniqueness and global exponential stability of the equilibrium point for the model. Here we point out that our methods, which are different from previous known results, base on the contraction mapping principle and inequality technique. Two remarks were also worked out to demonstrate the advantage of our results.  相似文献   

12.
In this paper, we investigate exponential stability for stochastic BAM networks with mixed delays. The mixed delays include discrete and distributed time-delays. The purpose of this paper is to establish some criteria to ensure the delayed stochastic BAM neural networks are exponential stable in the mean square. A sufficient condition is established by consructing suitable Lyapunov functionals. The condition is expressed in terms of the feasibility to a couple LMIs. Therefore, the exponential stability of the stochastic BAM networks with discrete and distributed delays can be easily checked by using the numerically efficient Matlab LMI toobox. A simple example is given to demonstrate the usefulness of the derived LMI-based stability conditions.  相似文献   

13.
研究一类具有反应扩散的滞后BAM神经网络平衡点的存在性唯一性和全局指数稳定性.运用拓扑同胚映射,Lyapunov泛函以及多参数方法,得到关于平衡点存在唯一性和全局指数稳定性的充分条件,将相关文献的结果推广到正整数r范数上.  相似文献   

14.
This paper is concerned with the existence and global exponential stability of periodic solution for a class of impulsive Cohen-Grossberg-type BAM neural networks with continuously distributed delays. Some sufficient conditions ensuring the existence and global exponential stability of periodic solution are derived by constructing a suitable Lyapunov function and a new differential inequality. The proposed method can also be applied to study the impulsive Cohen-Grossberg-type BAM neural networks with finite distributed delays. The results in this paper extend and improve the earlier publications. Finally, two examples with numerical simulations are given to demonstrate the obtained results.  相似文献   

15.
In this paper, we study Cohen-Grossberg neural networks (CGNN) with time-varying delay. Based on Halanay inequality and continuation theorem of the coincidence degree, we obtain some sufficient conditions ensuring the existence, uniqueness, and global exponential stability of periodic solution. Our results complement previously known results.  相似文献   

16.
This paper studies the problems of global exponential stability of reaction-diffusion high-order Markovian jump Hopfield neural networks with time-varying delays. By employing a new Lyapunov-Krasovskii functional and linear matrix inequality, some criteria of global exponential stability in the mean square for the reaction-diffusion high-order neural networks are established, which are easily verifiable and have a wider adaptive. An example is also discussed to illustrate our results.  相似文献   

17.
This paper is concerned with the exponential stability analysis for a class of cellular neural networks with both interval time-varying delays and general activation functions. The boundedness assumption of the activation function is not required. The limitation on the derivative of time delay being less than one is relaxed and the lower bound of time-varying delay is not restricted to be zero. A new Lyapunov-Krasovskii functional involving more information on the state variables is established to derive a novel exponential stability criterion. The obtained condition shows potential advantages over the existing ones since no useful item is ignored throughout the estimate of upper bound of the derivative of Lyapunov functional. Finally, three numerical examples are included to illustrate the proposed design procedures and applications.  相似文献   

18.
研究一类变时滞BAM神经网络平衡点的全局指数稳定性问题.在不要求激励函数全局Lipschitz条件下,通过构造合适的Lyapunov泛函,并结合Young不等式,得到了BAM神经网络模型在一定条件下全局指数稳定的一些充分条件,推广和改进了前人的相关结论,为综合设计指数稳定的时滞BAM神经网络提供了依据.  相似文献   

19.
In this paper, the problem of exponential stability analysis for neural networks is investigated. It is assumed that the considered neural networks have norm-bounded parametric uncertainties and interval time-varying delays. By constructing a new Lyapunov functional, new delay-dependent exponential stability criteria with an exponential convergence rate are established in terms of LMIs (linear matrix inequalities) which can be easily solved by various convex optimization algorithms. Two numerical examples are included to show the effectiveness of proposed criteria.  相似文献   

20.
In this paper, we consider the stochastic Cohen-Grossberg-type BAM neural networks with mixed delays. By utilizing the Lyapunov-Krasovskii functional and the linear matrix inequality (LMI) approach, some sufficient LMI-based conditions are obtained to guarantee the global asymptotic stability of stochastic Cohen-Grossberg-type BAM neural networks with mixed delays. These conditions can be easily checked via the MATLAB LMI toolbox. Moreover, the obtained results extend and improve the earlier publications. Finally, a numerical example is provided to demonstrate the low conservatism and effectiveness of the proposed LMI conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号