首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wetting of a sessile droplet on structured or patterned surface can be found in a broad range of applications. The researchers have been promoted to keep working on the topic. The review is on the basis of the recent experimental advances on the sessile droplet wetting on the hydrophobic, hydrophilic, or combined hydrophobic and hydrophilic surfaces under isothermal conditions, and on heating or cooling substrates having nonisothermal conditions. More attention has been paid on the wetting configuration between the sessile droplet and the structured substrate; the research gap has been discussed on identifying the three-phase line shape. Further, the three-dimensional measurement for the sessile droplets on the patterned surfaces with focusing more on the contact line of sessile droplets might reveal new physical insights. This review targets at building a holistic overview on the sessile droplet wetting behaviors on the structured substrate in the past 2 years.  相似文献   

2.
Micro‐RNAs (miRNAs) are small, endogenous, singlestranded, and noncoding RNAs. The miRNAs have been found to perform important functions in many cellular processes, such as development, proliferation, differentiation, and apoptosis. Circulating miRNAs have been proposed as emerging biomarkers in diseases such as cancer, diabetes, and cardiovascular disease including acute myocardial infarction (AMI). In this study, we developed CE with LIF (CE‐LIF) using fluorescence‐labeled DNA probe for determination of low abundance miRNA in cell extracts. The target miRNA is miRNA‐499, a biomarker candidate of AMI with low abundance in biological samples. In order to measure the trace level of miRNA, we optimized the hybridization conditions such as hybridization time, temperature, and buffer solution. The highest fluorescence intensity of the hybridized miRNA‐499 was found when hybridization was conducted at 40°C in 50 mM Tris‐acetate (pH 8.0) buffer containing 50 mM NaCl, and 10 mM EDTA for 15 min. The hybridized miRNA‐499 was detected in cultured H9c2 cardiomyoblast cells and the analysis of miRNA‐499 was completed within 1 h using CE‐LIF. These results showed the potential of CE for fast, specific, and sensitive high‐throughput analysis of low‐abundance miRNAs in cell extracts, biofluids, and tissues.  相似文献   

3.
Micro‐high‐performance liquid chromatography is a miniaturized, economic and ecological chromatographic system allowing the use of reduced size chromatographic columns. Coupled with electrospray ionization tandem mass spectrometry, this technique can be used to detect and quantify low concentrations of peptides. In this study, hepcidin was used as the model compound and analysed using octadecylsilica stationary phase by means of a gradient elution mode at a flow rate of 4 μL/min. Several parameters were studied to optimize peak focusing. Using the methodology of experimental design, the mobile‐phase gradient conditions and the sample composition were optimized in order to maximize the sensitivity and minimize retention time. Stability of the target peptide in solution was also demonstrated.  相似文献   

4.
A novel molecularly imprinted polymers (MIPs) coated micro‐stir bar (MSB) for Glibenclamide (GM) was developed. The MIPs, with GM as template molecular and methacrylic acid as functional monomer, were synthesized at the surface of the silylated MSB that was filled with magnetic core as substrate. Computational simulation was used for the optimal selection of functional monomers and porogen. The thickness of MIPs coating for MSB was about 10 μm, the adsorption and desorption time were about 40 and 20 min, respectively. The MIPs coated MSB possessed mechanical stability, high adsorption capacity, and good selectivity for GM. To achieve the optimum extraction performance, several parameters including extraction and desorption time, stirring rate, extraction and desorption solvent were investigated. A method for the determination of GM in herbal dietary supplements by MIPs coated MSB coupled with HPLC‐UV was established. The results exhibited good linear ranges of 10–6250 μg L?1 with the low limit of detection of GM (3.05 μg L?1) and the good recoveries (81.9–101.4%).  相似文献   

5.
SPE method is a very popular technique, and is commonly used for the prepurification, concentration, and isolation of different organic compounds from variable matrices. In this work, the optimization of SPE process was carried out. The breakthrough volume of solid sorbents based on octadecylsilane was determined and three methods were compared: (1) calculation one – the breakthrough volume was calculated using retention factor k determined with micro‐TLC method, frontal analysis – (2) breakthrough volume was determined as volume of whole elution peak, and (3) breakthrough volume was determined as the center of peak gravity. For calculation method, the k values of key estrogens and progestogens were derived from the micro‐TLC experiment reported previously. By combining these three methods, we can point the start of elution, the maximum concentration of analyte in eluate, and the whole eluent volume, which is necessary to achieve an appropriate selectivity and high extraction recovery. Proposed calculation method allows to estimate the beginning of the steroid peak, when the analyte appears in the eluate flowing from the sorbent. Such observation advances the SPE optimization protocol that was described before and was based on the correlation between raw kSPE and kmicro‐TLC data.  相似文献   

6.
A simple hydrophilic polyamide organic membrane protected micro‐solid‐phase extraction method with graphene oxide as the sorbent was developed for the enrichment of some parabens from water and vinegar samples prior to gas chromatography with mass spectrometry detection. The main experimental parameters affecting the extraction efficiencies, such as the type and amount of the sorbent, extraction time, stirring rate, salt addition, sample solution pH and desorption conditions, were investigated. Under the optimized experimental conditions, the method showed a good linearity in the range of 0.1–100.0 ng/mL for water samples and 0.5–100.0 ng/mL for vinegar samples, with the correlation coefficients varying from 0.9978 to 0.9997. The limits of detection (S/N = 3) of the method were in the range of 0.005–0.010 ng/mL for water samples and 0.01–0.05 ng/mL for vinegar samples, respectively. The recoveries of the method for the analytes at spiking levels of 5.0 and 70.0 ng/mL were between 84.6 and 106.4% with the relative standard deviations varying from 4.2 to 9.5%. The results indicated that the developed method could be a practical approach for the determination of paraben residues in water and vinegar samples.  相似文献   

7.
A high‐throughput micro‐solid‐phase extraction device based on a 96‐well plate was constructed and applied to the determination of pesticide residues in various apple samples. Butyl methacrylate and ethylene glycol dimethacrylate were copolymerized as a monolithic polymer and placed in the cylindrically shaped stainless‐steel meshes of 96‐micro‐solid‐phase extraction device and used as an extracting unit. Before the micro‐solid‐phase extraction, microwave‐assisted extraction was employed to facilitate the transfer of the pesticide residues from the apple matrix to liquid media. Then, 1 mL of the aquatic samples was transferred into the 96‐well plate and the 96‐micro‐solid‐phase extraction device was applied for the extraction of the selected pesticides. Influential parameters, such as sorbent‐to‐sorbent reproducibility, microwave‐assisted extraction time, ionic strength and micro‐solid‐phase extraction time, were optimized. The limits of quantitation were below 120 μg/kg, which are lower than the maximum residue limits. The developed method was successfully implemented for the extraction and determination of the selected pesticides from 20 different apple samples gathered from local markets. Phosalone was identified and quantified at the concentration level of 147 (±16.4) μg/kg in one of the samples.  相似文献   

8.
A SBA‐15/polyaniline para‐toluenesulfonic acid nanocomposite supported micro‐solid‐phase extraction procedure has been developed for the extraction of parabens (methylparaben, ethylparaben, and propylparaben) from wastewater and cosmetic products. The variables of interest in the extraction process were pH of sample, sample and eluent volumes, sorbent amount, salting‐out effect, extraction and desorption time, and stirring rate. A Plackett–Burman design was performed for the screening of variables in order to determine the significant variables affecting the extraction efficiency. Then, the significant factors were optimized by using a central composite design. The optimum experimental conditions found at 50 mL sample solution, extraction and desorption times of 40 and 20 min, respectively, 500 μL of 3% v/v acetic acid in methanol as eluent, 0.01 M salt addition, and 10 mg of the sorbent. Under the optimum conditions, the developed method provided detection limits in the range of 0.08–0.4 ng/mL with good repeatability (RSD% < 7) and linearity (r2 = 0.997–0.999) for the three parabens. Finally, this fast and efficient method was employed for the determination of target analytes in cosmetic products and wastewater, and satisfactory results were obtained.  相似文献   

9.
The present study investigates the variation of static contact angle of a water droplet in equilibrium with a solid surface in the absence of a body force and the dynamic contact angles of water droplet moving on a solid surface for different characteristic energies using the molecular dynamics simulation. With increasing characteristic energy, the static contact angle in equilibrium with a solid surface in the absence of a body force decreases because the hydrophobic surface changes its characteristics to the hydrophilic surface. In order to consider the effect of moving water droplet on the dynamic contact angles, we apply the constant acceleration to an individual oxygen and hydrogen atom. In the presence of a body force, the water droplet changes its shape with larger advancing contact angle than the receding angle. The dynamic contact angles are compared with the static contact angle in order to see the effect of the presence of a body force.  相似文献   

10.
《Electrophoresis》2018,39(17):2218-2227
A rapid, simple, and efficient sample extraction method based on micro‐matrix‐solid‐phase dispersion (micro‐MSPD) was applied to the extraction of polyphenols from pomegranate peel. Five target analytes were determined by ultra‐HPLC coupled with Q‐TOF/MS. Carbon molecular sieve (CMS) was firstly used as dispersant to improve extraction efficiency in micro‐MSPD. The major micro‐MSPD parameters, such as type of dispersant, amount of dispersant, grinding time, and the type and the volume of elution solvents, were studied and optimized. Under optimized conditions, 26 mg of pomegranate peel was dispersed with 32.5 mg of CMS, the grinding time was selected as 90 s, the dispersed sample was eluted with 100 μL of methanol. Results showed that the proposed method was of good linearity for concentrations of analytes against their peak areas (coefficient of determination r2 > 0.990), the LOD was as low as 3.2 ng/mL, and the spiking recoveries were between 88.1 and 106%. Satisfactory results were obtained for the extraction of gallic acid, punicalagin A, punicalagin B, catechin, and ellagic acid from pomegranate peel sample, which demonstrated nice reliability and high sensitivity of this approach.  相似文献   

11.
We describe a highly sensitive micro‐solid‐phase extraction method for the pre‐concentration of six phthalate esters utilizing a TiO2 nanotube array coupled to high‐performance liquid chromatography with a variable‐wavelength ultraviolet visible detector. The selected phthalate esters included dimethyl phthalate, diethyl phthalate, dibutyl phthalate, butyl benzyl phthalate, bis(2‐ethylhexyl)phthalate and dioctyl phthalate. The factors that would affect the enrichment, such as desorption solvent, sample pH, salting‐out effect, extraction time and desorption time, were optimized. Under the optimum conditions, the linear range of the proposed method was 0.3–200 μg/L. The limits of detection were 0.04–0.2 μg/L (S/N = 3). The proposed method was successfully applied to the determination of six phthalate esters in water samples and satisfied spiked recoveries were achieved. These results indicated that the proposed method was appropriate for the determination of trace phthalate esters in environmental water samples.  相似文献   

12.
Monoamine acidic metabolites in biological samples are essential biomarkers for the diagnosis of neurological disorders. In this work, acrylamide‐functionalized graphene adsorbent was successfully synthesized by a chemical functionalization method and was packed in a homemade polyether ether ketone micro column as a micro‐solid‐phase extraction unit. This micro‐solid‐phase extraction unit was directly coupled to high‐performance liquid chromatography to form an online system for the separation and analysis of three monoamine acidic metabolites including homovanillic acid, 5‐hydroxyindole‐3‐acetic acid, and 3,4‐dihydroxyphenylacetic acid in human urine and plasma. The online system showed high stability, permeability, and adsorption capacity toward target metabolites. The saturated extraction amount of this online system was 213.1, 107.0, and 153.4 ng for homovanillic acid, 5‐hydroxyindole‐3‐acetic acid, and 3,4‐dihydroxyphenylacetic acid, respectively. Excellent detection limits were achieved in the range of 0.08–0.25 μg/L with good linearity and reproducibility. It was interesting that three targets in urine and plasma could be actually quantified to be 0.94–3.93 μg/L in plasma and 7.15–19.38 μg/L in urine. Good recoveries were achieved as 84.8–101.4% for urine and 77.8–95.1% for plasma with the intra‐ and interday relative standard deviations less than 9.3 and 10.3%, respectively. This method shows great potential for online analysis of trace monoamine acidic metabolites in biological samples.  相似文献   

13.
A simple and rapid method based on micro‐liquid chromatography using a synthetic monolithic capillary column was developed for determination of iohexol in human serums, a marker to evaluate the glomerular filtration rate. A hydrophilic methacrylic acid‐ethylene dimethacrylate monolith provided excellent selectivity and efficiency for iohexol with separation time of 3 min using a mobile phase of 40:60 v/v 50 mM phosphate buffer pH 5/methanol. Four serum protein removal, methods using perchloric acid, 50% acetonitrile, 0.1 M zinc sulfate, and centrifuge membrane filter were examined. The method of zinc sulfate was chosen due to its simplicity, compatibility with the mobile phase system, nontoxicity, and low cost. Interday calibration curves were conducted over iohexol concentrations range of 2–500 mg/L (R2 = 0.9997 ± 0.0001) with detection limit of 0.44 mg/L. Intra‐ and interday precisions for peak area and retention time were less than 2.8 and 1.4%, respectively. The method was successfully applied to serum samples with percent recoveries from 102 to 104. The method was applied to monitor released iohexol from healthy subject. Compared with the commercially available reversed‐phase high‐performance liquid chromatography method, the presented method provided simpler chromatogram, faster separation with higher separation efficiency and much lower sample and solvent consumption.  相似文献   

14.
In this study, organic aerogels were synthesized by the sol–gel polycondensation of mixed cresol with formaldehyde in a slightly basic aqueous solution. Carbon aerogels and xerogels are generated by pyrolysis of organic aerogels. The novel sol–gel‐based micro‐solid‐phase extraction sorbent, resorcinol–formaldehyde xerogel, was employed for preconcentration of some selected herbicides. Three herbicides of the aryloxyphenoxypropionate group, clodinafop‐propargyl, haloxyfop‐etotyl, and fenoxaprop‐P‐ethyl, were extracted from aqueous samples by micro‐solid‐phase extraction and subsequently determined by gas chromatography with mass spectrometry. The effect of different parameters influencing the extraction efficiency of these herbicides including sample flow rate, sample volume, and extraction time were investigated and optimized. Under optimum conditions, linear calibration curves in the range of 0.10–500 ng/L with R2 > 0.99 were obtained. The relative standard deviation at 50 μg/L concentration level was lower than 10% (n = 5) and detection limits were between 0.05 and 0.20 μg/L. The proposed method was successfully applied to the sampling and extraction of herbicides from Zayanderood and paddy water samples.  相似文献   

15.
The long‐term goal of this study has been to prepare materials with a designed surface micro‐architecture that is able to prevent marine fouling by barnacles. Rows of steep microstructures with an elevation of a few micrometres separated from each other by 60 µm were manufactured using a biomimetic approach based on crystallization of calcite on surfaces of chemically patterned templates with carboxylate functionality. Templates were produced by the microcontact printing process using microfabricated silicone stamps with a surface micro‐architecture that has been shown to prevent barnacle settling. Electron spectroscopy for chemical analysis (ESCA), secondary ion mass spectrometry (SIMS) imaging and observations of wetting behaviour were used to examine the surfaces. The templates were used to grow surface microstructures by controlled crystallization of calcium carbonate by immersion in calcium chloride solution. Crystals grow randomly on the acidic areas of surfaces with 60/40 µm lines, whereas they grow in a regular fashion on a surface stamped with tiny (3–6 µm) 16‐mercaptohexadecanoic acid lines. This study showed that it is possible to prepare stable surface microstructures of a size up to 50 µm in a regular arrangement of lines. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

16.
A micro‐SPE technique was developed by fabricating a rather small package including a polypropylene membrane shield containing the appropriate sorbent. The package was used for the extraction of some triazine herbicides from aqueous samples. Solvent desorption was subsequently performed in a microvial and an aliquot of extractant was injected into GC‐MS. Various sorbents including aniline‐ortho‐phenylene diamine copolymer, newly synthesized, polypyrrole, multiwall carbon nanotube, C18 and charcoal were examined as extracting media. Among them, conductive polymers exhibited better performance. Influential parameters including extraction and desorption time, desorption solvent and the ionic strength were optimized. The developed method proved to be rather convenient and offers sufficient sensitivity and good reproducibility. The detection limits of the method under optimized conditions were in the range of 0.01–0.04 ng/mL. The RSDs at a concentration level of 0.1 ng/mL were obtained between 4.5 and 9.3% (n=5). The calibration curves of analytes showed linearity in the range of 0.05–10 ng/mL. The developed method was successfully applied to the extraction of selected triazines from real water samples. The whole procedure showed to be conveniently applicable and quite easy to manipulate.  相似文献   

17.
Reduction of analytes in ionization processes often obscures the determination of molecular structure. The reduction of analytes is found to take place in various desorption/ionization methods such as fast atom bombardment (FAB), secondary ion mass spectrometry (SIMS), matrix‐assisted laser desorption/ionization (MALDI) and desorption ionization on porous silicon (DIOS). To examine the extent of the reduction reactions taking place in electrospray droplet impact (EDI) processes, reduction‐sensitive dyes and S‐nitrosylated peptide were analyzed by EDI. No reduction was observed for methylene blue. While methyl red has a lower reduction potential than methylene blue, the reduction product ions were detected. For S‐nitrosylated peptide, protonated molecule ion [M + H]+ and NO‐eliminated molecular ion [M − NO + H]+• were observed but reduction reactions are largely suppressed in EDI compared with that in MALDI. As such, the analytes examined suffer from little reduction reactions in EDI. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
The electrospray droplet impact (EDI) method is a newly developed etching method using extremely large charged water cluster ions with masses of several 106 u. This work presents a comparative XPS study of chemical states of the transition metal oxides, TiO2 and Ta2O5, etched by Ar+ and EDI. Selective sputtering of oxygen was observed by Ar+ etching for these samples, but no chemical modification took place by EDI. This finding provided further evidence that EDI has the capability of nonselective etching for both inorganic and organic materials. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
20.
Ni‐based layer‐structured cathode materials are more vulnerable to moisture than conventional LiCoO2 cathodes, adsorbing more water and easily forming LiOH on the surface. This study investigated the moisture adsorption mechanism on the surface of layer‐structured cathodes. The behavior of water molecules on LiCoO2 and LiNiO2 surfaces were simulated and the structural and chemical changes during the adsorption process were analyzed by first‐principles methods. It was found that the adsorption occurs via two types of mechanism: one involving ionic interactions between Li on the crystal surface and O in the adsorbate, and the other involving covalent bonding between the transition metal (TM) on the surface and O in the adsorbate, which restores the coordination of the TM by recovering its broken bonds. The difference between the water adsorption behaviors of Ni‐based and Co‐based layer‐structured cathodes was found to be mainly due to the ionic‐interaction‐driven adsorption on the (003) surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号