首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dehydrocoupling/dehydrogenation behavior of primary arylamine–borane adducts ArNH2 ? BH3 ( 3 a – c ; Ar= a : Ph, b : p‐MeOC6H4, c : p‐CF3C6H4) has been studied in detail both in solution at ambient temperature as well as in the solid state at ambient or elevated temperatures. The presence of a metal catalyst was found to be unnecessary for the release of H2. From reactions of 3 a , b in concentrated solutions in THF at 22 °C over 24 h cyclotriborazanes (ArNH‐BH2)3 ( 7 a , b ) were isolated as THF adducts, 7 a , b? THF, or solvent‐free 7 a , which could not be obtained via heating of 3 a – c in the melt. The μ‐(anilino)diborane [H2B(μ‐PhNH)(μ‐H)BH2] ( 4 a ) was observed in the reaction of 3 a with BH3?THF and was characterized in situ. The reaction of 3 a with PhNH2 ( 2 a ) was found to provide a new, convenient method for the preparation of dianilinoborane (PhNH)2BH ( 5 a ), which has potential generality. This observation, together with further studies of reactions of 4 a , 5 a , and 7 a , b , provided insight into the mechanism of the catalyst‐free ambient temperature dehydrocoupling of 3 a – c in solution. For example, the reaction of 4 a with 5 a yields 6 a and 7 a . It was found that borazines (ArN‐BH)3 ( 6 a – c ) are not simply formed via dehydrogenation of cyclotriborazanes 7 a – c in solution. The transformation of 7 a to 6 a is slowly induced by 5 a and proceeds via regeneration of 3 a . The adducts 3 a – c also underwent rapid dehydrocoupling in the solid state at elevated temperatures and even very slowly at ambient temperature. From aniline–borane derivative 3 c , the linear iminoborane oligomer (p‐CF3C6H4)N[BH‐NH(p‐CF3C6H4)]2 ( 11 ) was obtained. The single‐crystal X‐ray structures of 3 a – c , 5 a , 7 a , 7 b? THF, and 11 are discussed.  相似文献   

2.
Two efficient methods for the preparation of 2‐(2‐sulfanyl‐4H‐3,1‐benzothiazin‐4‐yl)acetic acid derivatives 3 under mild conditions have been developed. The first method is based on the reaction of 3‐(2‐isothiocyanatophenyl)prop‐2‐enoates 1a – 1c with thiols in the presence of Et3N in THF at room temperature, leading to the corresponding dithiocarbamate intermediates 2 , which underwent spontaneous cyclization at the same temperature by an attack of the S‐atom at the prop‐2‐enoyl moiety in a 1,4‐addition manner (Michael addition) to give 2‐(2‐sulfanyl‐4H‐3,1‐benzothiazin‐4‐yl)acetates in one pot. The second method involves treatment of 3‐(2‐isothiocyanatophenyl)prop‐2‐enoic acid derivatives 1b – 1d with Na2S leading to the formation of 2‐(2‐sodiosulfanyl‐4H‐3,1‐benzothiazin‐4‐yl)acetic acid intermediates 5 by a similar addition/cyclization sequence, which are then allowed to react with alkyl or aryl halides to afford derivatives 3 . 2‐(2‐Thioxo‐4H‐3,1‐benzothiazin‐4‐yl)acetic acid derivatives 6 can be obtained by omitting the addition of halides.  相似文献   

3.
The synthesis, structures and catalytic activities of three organolanthanide complexes supported by the H3tpa ligand (H3tpa = tris(pyrrolyl‐α‐methyl) amine) are described. Treatment of H3tpa with one equivalent of Ln[N(SiMe3)2]3 (Ln = Sc, Sm, Dy) in THF gives, after recrystallization from toluene/THF solution, Sc(tpa)(THF)2 ( 1 ), Sm(tpa)(THF)3 ( 2 ) and Dy(tpa)(THF)3 ( 3 ) in good yields. The structures of complexes 1 – 3 were determined by single‐crystal X‐ray diffraction and elemental analysis. Complexes 2 and 3 exhibited good catalytic activity for the polymerization of ?‐caprolactone.  相似文献   

4.
Triblock copolymers (MPEG‐b‐PCEMA‐b‐PHQHEMA) bearing cinnamoyl and 8‐hydroxyquinoline side groups with different block length are synthesized by a two‐step reversible addition fragmentation chain transfer polymerization of cinnamoyl ethyl methacrylate (CEMA) and 2‐((8‐hydroxyquinolin‐5‐yl)methoxy)ethyl methacrylate (HQHEMA), respectively. The self‐assembly of MPEG‐b‐PCEMA‐b‐PHQHEMA in mixture of THF and ethanol is investigated by varying the ratio of THF and ethanol. Spheric micelles with diameter of 63.7 nm and polydispersity of 0.128 are obtained for MPEG113b‐PCEMA15b‐PHQHEMA17 in THF/ethanol with a volume ratio (v/v) of 5/5. The PCEMA inner shell of the resulted micelles is photo‐crosslinked under UV radiation to give stabilized micelles. The complex reaction of the stabilized micelles with Zn(II) is investigated under different conditions to give zinc(II)‐bis(8‐hydroxyquinoline)(Znq2)‐containing micelles. When the complex reaction is carried out in THF/ethanol (v/v = 5/5) or THF/toluene (v/v = 6/4) with zinc acetate, fluorescent Znq2‐containing micelles are obtained without obvious change in diameters and morphologies. The fluorescent micelles exhibit green emission with λmax at 520 nm. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1056–1064  相似文献   

5.
New homoligand and mixed‐ligand adducts of the heavier alkaline earth metal (Ca, Sr, Ba) halides with oxygen‐donor polyether ligands have been isolated and characterized and are compared with previously obtained compounds of the same class in order to give an overview on structures and properties. Homoligand halide adducts, discussed herein, are [CaI(DME)3]I ( 1 ), trans‐[SrI2(DME)3] ( 2 ), trans‐[BaI2(DME)3] ( 3 ), (DME = ethylene glycol dimethyl ether), [CaI(diglyme)2]I ( 4 ), cis‐[SrI2(diglyme)2] ( 5 ), trans‐[BaI2(diglyme)2] ( 6 ),(diglyme = diethylene glycol dimethyl ether, [SrI(triglyme)2]I ( 7 ), and [BaI(triglyme)2]I ( 8 ), (triglyme = triethylene glycol dimethyl ether). Introduction of the mono‐coordinating THF ligand (THF = tetrahydrofuran) in the coordination sphere of 1 , 2 , 3 , 4 allows the formation of the new mixed‐ligand compounds trans‐[CaI2(DME)2(THF)] ( 9 ), trans‐[SrI2(DME)2(THF)] ( 10 ), trans‐[BaI2(DME)2(THF)2] ( 11 ), and trans‐[CaI2(diglyme)2(THF)2] ( 12 ). These compounds were obtained from the metal halide salts in solution with pure or mixtures of ether solvents. While compounds 1 – 8 appear to be very stable and non‐reactive, adducts 9 – 12 present a comparable reactivity to the well known THF adducts [MI2(thf)n] (M = Ca, n = 4; Sr, Ba, n = 5).  相似文献   

6.
The radical cyclization of 3‐oxopropanenitriles 1a – 1e and alkenes 2a – 2g with cerium(IV) ammonium nitrate (CAN) in ether solvents was investigated (Tables 1 and 2). In the optimization study, 1,3‐dioxolane, 1,4‐dioxane, 1,2‐dimethoxyethane, Et2O, and THF were used as ether‐based solvents, and the latter was found to be the most effective solvent in radical cyclizations mediated by cerium(IV). This system (cerium(IV)/THF) was applied to cyclizations of various 3‐oxopropanenitriles and 1,3‐dicarbonyl compounds with alkenes resulting in the formation of 4,5‐dihydrofurans in high yields (Table 2 and Scheme 2). The results of the cerium(IV)/THF radical cyclization were compared with those obtained with manganese(III) acetate/AcOH; the cerium(IV)/THF system turned out to be much more efficient.  相似文献   

7.
The synthesis and reactivity of a series of bimetallic lanthanide aryloxides stabilized by a p‐phenylene‐bridged bis(β‐ketoiminate) ligand is presented. The reaction of 1,4‐diaminobenzene with acetylacetone in a 1:2.5 molar ratio in absolute ethanol gave the compound 1,4‐bis(4‐imino‐2‐pentanone)benzene ( 1 ) (LH2) in high yield. Compound 1 reacted with (ArO)3Ln(THF)2 (ArO = 2,6‐tBu2‐4‐MeC6H2O, THF = tetrahydrofuran) in a 1:2 molar ratio in THF, after workup, to give the corresponding dilanthanide aryloxides L[Ln(OAr)2(THF)]2 [Ln = Yb ( 2 ), Y ( 3 ), Sm ( 4 ), Nd ( 5 ), La ( 6 )] in high isolated yields. Compound 1 and complexes 2 – 6 were fully characterized, including X‐ray crystal structure analyses for complexes 2 , 3 , 5 , and 6 . Complexes 2 – 6 can be used as efficient pre‐catalysts for catalytic addition of amines to carbodiimides, and the ionic radii of the central metal atoms have a significant effect on the catalytic activity with the increasing sequence of La ( 6 ) < Nd ( 5 ) ≈ Sm ( 4 ) < Y ( 3 ) ≈ Yb ( 2 ). The catalytic addition reaction with 2 showed a good scope of substrates including primary and secondary amines.  相似文献   

8.
Iminophosphocins 8a – 8e and 9a – 9e were synthesized in four‐step reactions via Staudinger reaction. 3‐(Bromomethyl)‐1,2,3,4,5‐pentahydro‐3λ5‐naphtho[1,8‐f,g][1,5,3]diazaphosphocin‐3‐one ( 3 ) was prepared by reacting tris(bromomethyl)phosphineoxide ( 1 ) with 1,8‐diaminonaphthalene ( 2 ) in the presence of triethylamine (TEA) in dry tetrahydrofuran (THF), and treated with L‐valine methyl ester ( 4 ) and bis(2‐chloroethyl)amine ( 5 ) in the presence of TEA in dry THF to get 3‐methyl‐2‐[(3‐oxo‐1,2,3,4,5‐pentahydro‐3λ5‐naphtho[1,8‐f,g][1,5,3]diazaphosphocin‐3‐yl)methylamino]butanoate ( 6 ) and 3‐[di(2‐chloroethyl)aminomethyl]‐1,2,3,4,5‐pentahydro‐3λ5‐ naphtho[1,8‐f,g][1,5,3]diazaphosphocin‐3‐one ( 7 ). The compounds 6 and 7 were treated with trichlorosilane (SiCl3H) in dry tetrahydrofuran (THF) to form the trivalent P(III) intermediates 8 and 9 , which were further treated with various alkyl azides in dry THF in 55–60°C to afford the title compounds 8a – 8e and 9a – 9e . Their structures were established by multi‐nuclear NMR and mass spectra. All the newly synthesized compounds were found to possess moderate anti‐microbial activity.  相似文献   

9.
Two types of isostructural complexes of lanthanide chlorides with diglyme have been synthesized. These are mononuclear molecular complexes [LnCl3(diglyme)(THF)] (Ln = Eu ( 1 ), Gd ( 2 ), Dy ( 3 ), Er ( 4 ), Yb ( 5 ); diglyme = diethylen glycol dimethyl ether) and binuclear molecular complexes [LnCl3(diglyme)]2 (Ln = Dy ( 3d ), Er ( 4d ), Yb ( 5d )). Complex 1 was obtained by the reaction of [EuCl3(DME)2] with diglyme in THF. The complexes 2 – 5 and 3d – 5d resulted from reactions of LnCl3·6H2O, (CH3)3SiCl and diglyme in THF. The mononuclear complexes 2 – 5 crystallized directly from the solutions where the reactions of lanthanide compounds with diglyme took place. Recrystallizations of the powder products of the same reactions from dichloromethane resulted in the binuclear complexes 3d – 5d . Reactions of lanthanide bromide hydrates, (CH3)3SiBr and diglyme in THF achieved mononuclear molecular complexes [LnBr3(diglyme)(L)] (Ln = Gd, L = H2O ( 6 ); Ln = Ho, L = THF ( 7 )). Crystals of 6 and 7 were grown by recrystallization from dichloromethane. The lanthanide atoms (Ln = Eu–Yb) are seven‐coordinated in a distorted pentagonal bipyramidal fashion in all reported complexes, 1 – 7 and 3d – 5d . Four oxygen atoms and three halide ions are coordinated to lanthanide atoms in 1 – 7 , [LnX3(diglyme)(L)]. Four chloride ions, two bridging and two nonbridging, and three oxygen atoms are coordinated to lanthanide atoms in 3d – 5d , [LnCl3(diglyme)]2.  相似文献   

10.
With the aim of accessing colloidally stable, fiberlike, π‐conjugated nanostructures of controlled length, we have studied the solution self‐assembly of two asymmetric crystalline–coil, regioregular poly(3‐hexylthiophene)‐b‐poly(2‐vinylpyridine) (P3HT‐b‐P2VP) diblock copolymers, P3HT23b‐P2VP115 (block ratio=1:5) and P3HT44b‐P2VP115 (block ratio=ca. 1:3). The self‐assembly studies were performed under a variety of solvent conditions that were selective for the P2VP block. The block copolymers were prepared by using Cu‐catalyzed azide–alkyne cycloaddition reactions of azide‐terminated P2VP and alkyne end‐functionalized P3HT homopolymers. When the block copolymers were self‐assembled in a solution of a 50 % (v/v) mixture of THF (a good solvent for both blocks) and an alcohol (a selective solvent for the P2VP block) by means of the slow evaporation of the common solvent; fiberlike micelles with a P3HT core and a P2VP corona were observed by transmission electron microscopy (TEM). The average lengths of the micelles were found to increase as the length of the hydrocarbon chain increased in the P2VP‐selective alcoholic solvent (MeOH<iPrOH<nBuOH). Very long (>3 μm) fiberlike micelles were prepared by the dialysis of solutions of the block copolymers in THF against iPrOH. Furthermore the widths of the fibers were dependent on the degree of polymerization of the chain‐extended P3HT blocks. The crystallinity and π‐conjugated nature of the P3HT core in the fiberlike micelles was confirmed by a combination of UV/Vis spectroscopy, photoluminescence (PL) measurements, and wide‐angle X‐ray scattering (WAXS). Intense sonication (iPrOH, 1 h, 0 °C) of the fiberlike micelles formed by P3HT23b‐P2VP115 resulted in small (ca. 25 nm long) stublike fragments that were subsequently used as initiators in seeded growth experiments. Addition of P3HT23b‐P2VP115 unimers to the seeds allowed the preparation of fiberlike micelles with narrow length distributions (Lw/Ln <1.11) and lengths from about 100‐300 nm, that were dependent on the unimer‐to‐seed micelle ratio.  相似文献   

11.
Tris(tetrathiafulvaleno)dodecadehydro[18]annulene‐hexaesters have a multi‐functionality that is very sensitive to small differences in the ester side‐chain. Self‐aggregation of the [18]annulenes in amphiphilic media such as THF–H2O (v/v, 1:1) either produce a fibrous structure or result in temperature hysteresis of the color and 1H NMR signals. This temperature hysteresis in solution is due to both strong self‐aggregation behavior and unique cluster formation in a binary solution of THF and water.  相似文献   

12.
Chiral Gallium and Indium Alkoxometalates Li2(S)‐BINOLate ((S)‐BINOL = (S)‐(–)‐2,2′‐Dihydroxy‐1,1′‐binaphthyl) generated by dilithiation of (S)BINOL with two equivalents nBuLi was reacted with GaCl3 und InCl3 in THF to the alkoxometalates [{Li(THF)2}{Li(THF)}2{Ga((S)‐BINOLate)3}] ( 1 ) and [{Li(THF)2}2{Li(THF)}{In((S)‐BINOLate)3}] · [{Li(THF)2}{Li(THF)}2{In((S)‐ BINOLate)3}]2 ( 3 ), respectively. 1 and 3 crystallize from THF/toluene mixtures as 1 · 2 toluene and 3 · 8 toluene. The treatment of PhCH2GaCl2 with Li2(S)‐BINOLate in THF under reflux, followed by recrystallization of the product from DME gives the gallate [{Li(DME)}3{Ga((S)BINOLate)3}] · 1.5 THF ( 2 · 1.5 THF). 1 – 3 were characterized by NMR, IR and MS techniques. In addition, 1 · 2 toluene, 2 · 1.5 THF and 3 · 8 toluene were investigated by X‐ray structure analyses. According to them, a distorted octahedral coordination sphere around the group 13 metal was formed, built‐up by three BINOLate ligands. The three Li+ counter ions act as bridging units by metal‐oxygen coordination. The coordination sphere of the Li+ ions was completed, depending on the available space, by one or two THF ligands ( 1 · 2 toluene, 3 · 8 toluene) and one DME ligand ( 2 · 1.5 THF), respectively. The sterical dominance of the BINOLate ligands can be shown by the almost square‐planar coordination of the Li+ ions in 2 · 1.5 THF giving a small twisting angle of only 17°.  相似文献   

13.
The electron‐donating unit 2,3,4,6‐tetrahydro‐1,6‐dithia‐3a‐azaphenalene (THDTAP) was introduced onto terpyridine (TPy) to give a donor‐acceptor (D‐A) type TPy‐ligand (compound 2 ). Upon selective oxidation of two sulfur atoms on the THDTAP moiety of 2 , the ligands 3 — 6 were created. The electronic structures of 2 — 6 were evaluated by theoretical, electrochemical, and spectroscopic investigations. The oxidation on the sulfur atoms brings significant influence on the electron‐donating ability of THDTAP moiety, subsequently, leads to fine modulations on intramolecular charge‐transfer (ICT) of 2 — 6 and the electronically excited states of the complexes of 2 — 6 with metal ions. Based on the optical response of 2 — 6 toward metal ions, the step‐by‐step recognition of Zn2+, Cd2+, and Ag+ ions is set up by employing 2 and 3 as combined fluorescence sensors.  相似文献   

14.
An efficient short total synthesis of benzo[c]phenanthridine alkaloids including oxyavicine, oxynitidine, and oxysanguinarine is described. Thus, N‐methyl‐o‐bromobenzaldimines 1 b – d undergo regioselective cyclization with 4‐(benzo[d][1,3]dioxol‐5‐yl)but‐3‐yn‐1‐ol ( 2 b ) in the presence of [Ni(cod)2] (cod=1,5‐cyclooctadiene). In situ oxidation of the resultant isoquinolinium salts gives isoquinolinone derivatives 5 b – d with benzo[d][1,3]dioxol‐5‐yl substitution at the C3 atom and a (CH2)2OH group at the C4 atom. Later, oxidation of the alcohol group in 5 b – d to the aldehyde moiety followed by acid‐catalyzed cyclization and dehydration completes the total syntheses to give oxyavicine, oxynitidine, and oxysanguinarine in 67, 65, and 60 % yields, respectively. The synthesis requires four steps from o‐bromobenzaldehyde derivatives. Transformations of these alkaloids to the other alkaloids in this family are also discussed herein.  相似文献   

15.
Phenylacetylene (PA) derivatives having two polar groups (ester, 2a – d ; amide, 4) or one cyclic polar group (imide, 5a – c ) were polymerized using (nbd)Rh+[(η6‐C6H5)B?(C6H5)3] catalyst to afford high molecular weight polymers (~1 × 106 – 4 × 106). The hydrolysis of ester‐containing poly(PA), poly( 2a) , provided poly(3,4‐dicarboxyPA) [poly ( 3 )], which could not be obtained directly by the polymerization of the corresponding monomer. The solubility properties of the present polymers were different from those of poly(PA) having no polar group; that is, poly( 2a )–poly( 2d ) dissolved in ethyl acetate and poly( 4 ) dissolved in N,N‐dimethylformamide, while poly(PA) was insoluble in such solvents. Ester‐group‐containing polymers [poly( 2a )–poly( 2d )] afforded free‐standing membranes by casting from THF solutions. The membrane of poly( 2a ) showed high carbon dioxide permselectivity against nitrogen (PCO2/PN2 = 62). © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5943–5953, 2006  相似文献   

16.
The reduction of digallane [(dpp‐bian)Ga? Ga(dpp‐bian)] ( 1 ) (dpp‐bian=1,2‐bis[(2,6‐diisopropylphenyl)imino]acenaphthene) with lithium and sodium in diethyl ether, or with potassium in THF affords compounds featuring the direct alkali metal–gallium bonds, [(dpp‐bian)Ga? Li(Et2O)3] ( 2 ), [(dpp‐bian)Ga? Na(Et2O)3] ( 3 ), and [(dpp‐bian)Ga? K(thf)5] ( 7 ), respectively. Crystallization of 3 from DME produces compound [(dpp‐bian)Ga? Na(dme)2] ( 4 ). Dissolution of 3 in THF and subsequent crystallization from diethyl ether gives [(dpp‐bian)Ga? Na(thf)3(Et2O)] ( 5 ). Ionic [(dpp‐bian)Ga]?[Na([18]crown‐6)(thf)2]+ ( 6 a ) and [(dpp‐bian)Ga]?[Na(Ph3PO)3(thf)]+ ( 6 b ) were obtained from THF after treatment of 3 with [18]crown‐6 and Ph3PO, respectively. The reduction of 1 with Group 2 metals in THF affords [(dpp‐bian)Ga]2M(thf)n (M=Mg ( 8 ), n=3; M=Ca ( 9 ), Sr ( 10 ), n=4; M=Ba ( 11 ), n=5). The molecular structures of 4 – 7 and 11 have been determined by X‐ray crystallography. The Ga? Na bond lengths in 3 – 5 vary notably depending on the coordination environment of the sodium atom.  相似文献   

17.
Well‐defined PEO‐b‐PMMA was prepared, initiated by macroinitiator PEO‐Br, by means of ATRP, where esterification of the terminal hydroxyl group of PEO with 2‐bromoisobutyryl bromide yielded a macroinitiator PEO‐Br. Highly ordered microporous films (hexagonal pattern) were constructed by emulsion micelles of such amphiphilic diblock copolymer formed from a solution with CHCl3/H2O/THF = 100:5:10 (v/v). We also constructed the microporous films using diblock copolymer by the current water‐assisted method.

  相似文献   


18.
Two new soluble alternating carbazolevinylene‐based polymers POXD and PTPA as well as the corresponding model compounds MOXD and MTPA were synthesized by Heck coupling. POXD and MOXD contained 2,5‐diphenyloxadiazole segments, while PTPA and MTPA contained triphenylamine segments. All samples displayed high thermal stability. The polymers had higher glass transition temperature (Tg) than their corresponding model compounds. The samples showed absorption maximum at 364–403 nm with optical band gap of 2.62–2.82 eV. They emitted blue‐green light with photoluminescence (PL) emission maximum at 450–501 nm and PL quantum yields in THF solution of 0.15–0.36. The absorption and the PL emission maxima of PTPA and MTPA were blue‐shifted as compared to those of POXD and MOXD . The electroluminescence (EL) spectra of multilayered devices made using four materials exhibited bluish green emissions, which is well consistent with PL spectra. The EL devices made using poly(vinyl carbazole) doped with MOXD and MTPA as emitting materials showed luminances of 12.1 and 4.8 cd m?2. POXD and PTPA exhibited 25.4, and 96.3 cd m?2, respectively. The polymer containing the corresponding molecules in the repeating group showed much higher device performances. Additionally, POXD and MOXD exhibited better stability of external quantum efficiency (EQE) and luminous efficiency with current density resulting from enhancing the electron transporting properties. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5592–5603, 2008  相似文献   

19.
Stable potassium enolates of N,N‐diethylacetamide [α‐potassio‐N,N‐diethylacetamide ( 1 )], N,N‐diethylpropionamide [α‐potassio‐N,N‐diethylpropionamide ( 2 )], and N,N‐diethylisobutyramide [α‐potassio‐N,N‐diethylisobutyramide ( 3 )] were prepared by the proton abstraction of the corresponding N,N‐diethylamides with diphenylmethylpotassium (Ph2CHK) or potassium naphthalenide in THF. The relative nucleophilicity of 1 – 3 was estimated to be in the order of 1 < 3 < 2 from the results of the alkylation reaction with methyl iodide. N,N‐diethylacetamide transferred its α‐proton to 2 quantitatively in THF at 0 °C, whereas no reaction occurred between N,N‐diethylisobutyramide and 2 ; this indicated the relative basicity to be 1 < 2 ~ 3 . Anionic polymerizations of N,N‐diethylacrylamide (DEA) and methyl methacrylate were quantitatively initiated with 2 in THF at ?78 °C, whereas the initiation efficiencies of 2 for styrene and 2‐vinylpyridine were about 2 and 67%, respectively. The initiation of DEA with 1 – 3 at ?78 or 0 °C in THF gave poly (DEA)s having broad molecular weight distributions (MWDs; Mw/Mn = 2) and ill‐controlled molecular weights. In contrast, poly(DEA)s of narrow MWDs (Mw/Mn < 1.2) and predicted Mn's were obtained with 2 in the presence of diethylzinc (Et2Zn) at ?78 °C, whereas the initiations with 1 /Et2Zn and 3 /Et2Zn at ?78 °C resulted in poor control of the molecular weights. At the higher temperature of 0 °C, all the binary initiator systems ( 1 – 3 /Et2Zn) induced controlled polymerizations of DEA in terms of the conversion, molecular weight, and MWD. The poly(DEA)s produced with 1 – 3 /Et2Zn at 0 °C showed mr‐rich configurations (mr = 76–89%), as observed for the poly(DEA) generated with Ph2CHK/Et2Zn. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1260–1271, 2007  相似文献   

20.
Six novel H2O‐soluble β‐cyclodextrin derivatives containing a 1,2‐benzisoselenazol‐3(2H)‐one moiety were synthesized by a convenient method in 25–60% yield and characterized by MS, elemental analysis, IR, 1H‐NMR, and UV/VIS spectroscopy. The conformations of these β‐cyclodextrin derivatives 1 – 6 were analyzed by circular dichroism and fluorescence‐lifetime experiments. The superoxide dismutase (SOD) activities of 1 – 6 were determined by auto‐oxidation of pyrogallol at 25.0° in buffer solution (pH 8.2), giving relatively high SOD activities of up to 121–330 U/mg. Also, the glutathione peroxidase (GPX) activities of hosts 1 – 6 , determined by the method of Wilson at 37° in buffer solution (pH 7.0), show good GPX activities in the range of 0.34–0.86 U/μmol. The mimicking results of the bifunctional artificial enzyme models 1 – 6 were globally compared with regard to their structural and conformational difference.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号