首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 904 毫秒
1.
Stable vinyl acetate macroradicals were produced by polymerization in a nonviscous poor solvent, a viscous good solvent and a viscous poor solvent. These macroradicals were then allowed to react with a second vinyl monomer to produce block copolymers. The formation of block copolymers was monitored for rate and yield data. The block copolymers produced were poly(vinyl acetate-b-methyl methacrylate), poly(vinyl acetate-b-acrylic acid), poly(vinyl acetate-b-vinylpyrrolidone), poly(vinyl acetate-b-acrylonitrile), poly(vinyl acetate-b-styrene), and poly(vinyl acetate-b-methyl acrylate). The block copolymers were characterized by yield, precipitation in selected solvents, pyrolysis gas chromatography, and differential scanning calorimetry.  相似文献   

2.
Summary: The one step synthesis of a series of branched azobenzene side‐chain liquid‐crystalline copolymers by the self‐condensing vinyl copolymerization (SCVCP) of a methyl acrylic AB* inimer, 2‐(2‐bromoisobutyryloxy)ethyl methacrylate (BIEM), with the monomer 6‐(4‐methoxy‐azobenzene‐4′‐oxy)hexyl methacrylate (M), by atom transfer radical polymerization (ATRP) in the presence of CuBr/N,N,N′,N′,N″‐pentamethyldiethylenetriamine as a catalyst system, and in chlorobenzene solvent, is reported. The degree of branching (DB), and the molecular weights and polydispersities of the resultant polymers were determined by NMR spectroscopy and size exclusion chromatography, respectively. The phase behaviors of the branched copolymers were characterized by differential scanning calorimetry (DSC) and thermal polarized optical microscopy (POM). The degree of branching of the branched copolymers could be controlled by the comonomer ratio in the feed and influenced their liquid‐crystal properties. Liquid‐crystal properties were not exhibited when the comonomer ratio was low. Comonomer ratios greater than 8 gave polymers with a lower number of branches, which exhibited both a smectic and a nematic phase.

A polarized optical micrograph of the smectic phase texture of a polymer synthesized here with a higher comonomer feed ratio (magnification × 400).  相似文献   


3.
Polymers play an important role in hair cosmetics due to their ability to change the properties of the hair. In order to tailor the properties such as fixative power, wash‐out and elasticity, polymers are generated by smart choice of monomer composition and process technology. Up to the seventies, polyvinylpyrrolidone and its copolymers were dominant. In the seventies, copolymers of vinyl acetate with further monomers followed and copolymers of methyl vinylethers with maleic acid half esters. Polyquaternium compounds were developed (copolymers of vinyl pyrrolidone with quaternized vinyl imidazole or dimethylaminomethyl methacrylate)to ease the combing of hair. In the seventies and eighties, copolymers of acrylate monomers and their esters or alkylacrylamides were supplied. The latest developments aim for polymers with covalently bound silicon compounds in order to ease the demanding formulation work, or for polymers which allow a formulation with water as substitute for alcohol as solvent.  相似文献   

4.
Two series of vinyl alcohol-vinyl acetate copolymers were prepared by homogeneous and heterogeneous acetylation of the same precursor poly(vinyl alcohol). Their intramolecular monomer distributions were analyzed by IR spectrometry, calorimetry, and differential thermal analysis. The results show a more blocky distribution for the heterogeneously prepared copolymers. The properties of these (co)polymers in dilute aqueous solution were determined by means of viscometry. Whereas the copolymer-solvent interaction parameter of the homogeneously acetylated, random copolymers hardly varied with acetate content, a definite minimum was found for the blocky copolymers at about 7 mole% vinyl acetate. These findings were attributed to the incompatibility of dissimilar sequences, which sharply decreases with decreasing vinyl acetate sequence length. Up to about 17 mole% vinyl acetate content, the solvent quality for the copolymers is at least as good as for poly(vinyl alcohol). In addition, the dilute solution properties of the samples were established in water saturated with 1-butanol. For copolymers with up to about 17 mole% vinyl acetate, at 25°C this mixture is a better solvent than water. The highest increase in solvent quality was found for the homopolymer, whereas the increase diminished with acetate content, irrespective of the intramolecular vinyl acetate distribution. These findings are explained in terms of preferential adsorption of 1-butanol onto the (co)polymer backbone due to hydrophobic interactions and prevention of this process by the bulky acetate groups.  相似文献   

5.
Gradient-elution liquid chromatography (GELC) is a powerful tool for the characterization of synthetic polymers. However, gradient-elution chromatograms often suffer from breakthrough phenomena. Breakthrough can be averted by using a sample solvent as weak as the mobile phase. However, this approach is only applicable to polymers for which a sufficiently strong solvent exists which is at the same time a weak eluent. Finding such a solvent for a given polymer can be laborious or may even be impossible. Besides, when working with comprehensive two-dimensional LC the effluent of the first dimension is the injection solvent of the second dimension. In this case, it is not possible to avoid breakthrough by adjusting the eluent strength of the second-dimension injection solvent. Therefore, another strategy to avert breakthrough has to be implemented. In this work, we successfully avoided breakthrough in GELC by mixing the mobile phase not before, but after the autosampler. This was demonstrated measuring a blend of poly(methyl methacrylate) standards with different molecular-weights as model mixture with comprehensive two-dimensional GELC × size-exclusion chromatography. The strategy is thought to be applicable to all substances with a sufficiently strong dependence of retention on mobile-phase composition. This typically applies to large molecules (synthetic and natural polymers) and allows efficient refocusing. Unretained and barely retained substances are not refocused and therefore suffer in the proposed setup from peak broadening.  相似文献   

6.
Ziegler–Natta catalysts have played a major role in industry for the polymerization of dienes and vinyl monomers. However, due to the deactivation of the catalyst, this system fails to polymerize polar vinyl monomers such as vinyl acetate, methyl methacrylate, and methyl acrylate. Herein, a catalytic system composed of NdCl3⋅3TEP/TIBA is reported, which promotes a quasi‐living polymerization of dienes and is also active for the homopolymerization of polar vinyl monomers. Additionally, this catalytic system generates polymyrcene‐b‐polyisoprene and poly(myrcene)‐b‐poly(methyl methacrylate) diblock copolymers by sequential monomer addition. To encourage the replacement of petroleum‐based polymers by environmentally benign biobased polymers, polymerization of β‐myrcene is demonstrated with a catalytic activity of ≈106 kg polymer mol Nd−1 h−1.  相似文献   

7.
A novel vinyl‐hydantoin monomer, 3‐(4′‐vinylbenzyl)‐5,5‐dimethylhydantoin, was synthesized in a good yield and was fully characterized with Fourier transform infrared (FTIR) and 1H NMR spectra. Its homopolymer and copolymers with several common acrylic and vinyl monomers, such as vinyl acetate, acrylonitrile, and methyl methacrylate, were readily prepared under mild conditions. The polymers were characterized with FTIR and 1H NMR, and their thermal properties were analyzed with differential scanning calorimetry studies. The halogenated products of the corresponding copolymers exhibited potent antibacterial properties against Escherichia coli, and the antibacterial properties were durable and regenerable. The structure–property relationships of the polymers were further discussed. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3348–3355, 2001  相似文献   

8.
The major objective of this research was to modify the surface characteristics of poly(L ‐lactide) (PLA) by grafting a combination of hydrophilic polymers to produce a continuum of hydrophilicity. The PLA film was solvent cast, and the film surfaces were activated by ultra violet (UV) irradiation. A single monomer or combination of two monomers, selected from vinyl acetate (VAc), acrylic acid (AA), and acrylamide (AAm), were then grafted to the PLA film surface using a UV induced photopolymerization process. The film surfaces resulting from each reaction step were analyzed using ATR‐FTIR spectroscopy and contact angle goniometry. Results showed that AAm dominated the hydrophilicity of the film surface when copolymerized with VAc or AA, while the water contact angles for PLA films grafted with poly(vinyl acetate‐co‐acrylic acid) varied more gradually with feed composition. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6534‐6543, 2006  相似文献   

9.
2‐Acrylamido‐2‐methylpropanesulphonic acid (AMPS) was copolymerized with both acrylic acid (AA) and vinyl acetate (VA) at different compositions. The thermal behaviors of the resulted copolymers, PAMPS, PAA and PVA were studied using thermogravimetric analyses. In all cases of homopolymers and copolymers, there are two degradation stages. The observed enhancement of the thermal properties of the copolymers compared with that of PAMPS are attributed to intramolecular cyclization reactions and ring formations. The apparent activation energies of the decomposition were determined and correlated to the sequence of the thermal stabilities of the various polymers.  相似文献   

10.
Adsorbed poly(ethylene‐stat‐vinyl acetate) (PEVAc) on fumed silica was studied using temperature‐modulated differential scanning calorimetry (TMDSC) and FT‐IR spectroscopy. The properties of the copolymers were compared with poly(vinyl acetate) (PVAc) and low density polyethylene (LDPE) as references. TMDSC analysis of the copolymer‐silica samples in the glass transition region was complicated for the copolymers because of the ethylene crystallinity. Nevertheless, examination of the glass transition region for small adsorbed amounts of these copolymers indicated the presence of tightly‐ and loosely‐bound polymer segments, similar to other polymers which have an attraction to silica. Compared with bulk polymers with the same composition, the tightly‐bound polymers showed an increased glass transition temperature (Tg) and a loosely‐bound fraction with a lower Tg than bulk. FT‐IR spectra of the surface copolymers indicated that the fraction of bound carbonyls (p) increased as the fraction of vinyl acetate in the copolymers decreased, consistent with the notion that the carbonyls from vinyl acetate preferentially find their way to the silica surface. Spectra from samples with different adsorbed amounts of polymer were used to obtain the amount of bound polymer (Mb) and the ratio of molar absorption coefficients of bound carbonyls to free carbonyls (X). The copolymers had very large p values (up to 0.8) at small adsorbed amounts and dependent on the composition of the polymer. However, an analysis of the bound fractions, based on only the vinyl acetate groups, superimposed the data, suggesting that the ethylene units simply dilute the vinyl acetate groups in the surface polymer. The sample with the smallest fraction of vinyl acetate did not show this behavior and may be considered to be “carbonyl poor.” © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 727–736  相似文献   

11.
Steroid-selective polymers were prepared by the molecular imprinting technique, using 2-(methacryloyloxy)ethyl phosphate as functional monomer. The retentivity and selectivity of the obtained imprinted polymers were evaluated by liquid chromatography. The cholesterol-imprinted polymer showed higher affinity for cholesterol than that for cholesterol derivatives. The selectivity of the imprinted polymer was superior to the imprinted polymer prepared with the conventional functional monomer, 2-(trifluoromethyl)acrylic acid. Estradiol was also imprinted and gave similar results, demonstrating that 2-(methacryloyloxy)ethyl phosphate would be suitable for imprinted polymers of cholesterol and related compounds.  相似文献   

12.
The historical development of our research on polycondensation that proceeds in a chain-growth polymerization manner ("chain-growth polycondensation") for well-defined condensation polymers is described. We first studied polycondensation in which change of the substituent effect induced by bond formation drove the reactivity of the polymer end group higher than that of the monomer. In this approach, well-defined aromatic polyamides, polyesters, polyethers, and poly(ether sulfone)s were obtained. The second approach was the study of the phase-transfer polymerization of a solid monomer dispersed in an organic solvent. In this type of polymerization, the solid monomer was physically unable to react with another monomer and was carried with the phase transfer catalyst into the solution phase where it reacted with an initiator and the polymer end group in the solvent in a chain polymerization manner. We also found catalyst-transfer polycondensation as a third approach to chain-growth polycondensation. In the Ni-catalyzed polycondensation of 2-bromo-5-chloromagnesiothiophenes, the Ni catalyst transferred to the polymer end group, and a coupling reaction occurred there to yield a well-defined polythiophene. This chain-growth polycondensation was applied to the synthesis of condensation polymer architectures such as block copolymers, star polymers, graft copolymers, and so on.  相似文献   

13.
Methyltriphenylphosphonium bromide/chalcone/formic acid, a green ternary deep eutectic solvent, was applied as a functional monomer and dummy template simultaneously in the synthesis of a new molecularly imprinted polymer. Ternary deep eutectic solvent based molecularly imprinted polymers are used as a solid‐phase extraction sorbent in the separation and purification of rutin and quercetin from Herba Artemisiae Scopariae combined with high‐performance liquid chromatography. Fourier transform infrared spectroscopy and field‐emission scanning electron microscopy were applied to characterize the deep eutectic solvent based molecularly imprinted polymers synthesized using different molar ratios of chalcone. The static and competitive adsorption tests were performed to examine the recognition ability of the molecularly imprinted polymers to rutin and quercetin. The ternary deep eutectic solvent consisting of formic acid/chalcone/methyltriphenylphosphonium bromide (1:0.05:0.5) had the best molecular recognition effect. After optimization of the washing solvents (methanol/water, 1:9) and eluting solvents (acetonitrile/acetic acid, 9:1), a reliable analytical method was developed for strong recognition towards rutin and quercetin in Herba Artemisiae Scopariae with satisfactory extraction recoveries (rutin: 92.48%, quercetin: 94.23%). Overall, the chalcone ternary deep eutectic solvent‐based molecularly imprinted polymer coupled with solid‐phase extraction is an effective method for the selective purification of multiple bioactive compounds in complex samples.  相似文献   

14.
Complex synthetic polymer systems as for example copolymers exhibit distributions in at least two of the three basic molecular characteristics which are molar mass, chemical structure/composition and molecular architecture. Size exclusion chromatography (SEC) separates macromolecules according to their size in solution which simultaneously depends on all molecular characteristics. Therefore, multi‐dimensional liquid chromatographic techniques are to be applied to independently assess all different distributions present in the sample. So far, two‐dimensional separations have been attempted. In the first dimension separation column, selected liquid chromatographic mechanisms are intentionally combined to suppress effects of all but one molecular characteristic. Consequently, polymer species are separated exclusively or at least predominantly according to one single parameter. In the second dimension separation column, macromolecules are separated according to another molecular characteristic. In this contribution the methods are briefly reviewed in which effect of polymer molar mass on polymer retention is suppressed. The resulting ”one parameter separation systems” can be on‐line or off‐line connected to another separation system such as SEC to provide more detailed characterization of complex polymers. Besides, selected procedures for the re‐concentration of diluted polymer solutions are concisely treated. These may be utilized for increasing the concentration of sample(s) leaving the first dimension separation column. Eventually, some arrangements for controlled sample re‐introduction into the second dimension separation column are outlined.  相似文献   

15.
Linear, star, and block copolymers based on poly(vinyl pyrrolidone) (PVP) were synthesized with the macromolecular design via the interchange of xanthates (MADIX) process for use as potential stabilizers in suspension polymerization. The design of the leaving group of the dithioxanthate‐based transfer agent was shown to be key to the successful preparation of well‐defined PVP architectures. A linear correlation of the monomer conversion and molecular weight was found in the synthesis of star polymers, whereas the molecular weight distribution remained narrow (polydispersity index < 1.3). Significant side reactions, which typically broaden the molecular weight distribution when R‐designed MADIX agents are used, were absent. The living behavior of the PVP polymerization was furthermore confirmed via chain extension with vinyl acetate, which resulted in the formation of PVP–PVAc block copolymers [where PVAc is poly(vinyl acetate)]. The prepared polymers were used as stabilizers in suspension polymerization to prepare crosslinked poly(vinyl neodecanoate)/ethylene glycol dimethacrylate microspheres. The ratio of the interfacial tension of the aqueous and monomer phases and the overall viscosity were found to have an effect on the diameter of the particles, with PVP star polymers as stabilizers resulting in smaller particles. A smaller interfacial tension, measured when star polymers and block copolymers were used, resulted in the appearance of smaller particles, probably because of more breakup events of the monomer droplets and the enhanced stabilization of the particle surface area. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4372–4383, 2006  相似文献   

16.
《European Polymer Journal》1986,22(5):381-385
The fluorescence depolarization of the anthryl groups attached to poly(styrene-maleic anhydride) [P(St-MA)] has been examined in mixtures of various acrylic adhesive polymers with toluene for weight fractions ranging from 0 to 0.25. It is clear that the relative mean rotational relaxation time of the anthryl groups sharply increases with increasing concentration of poly(2-ethylhexylacrylate) (PEHA) containing about 5% acrylic acid units and 10% vinyl acetate units. It may be concluded that an excellent adhesive polymer is made with acrylic acid units as agents for intra- and interaction and vinyl acetate units as depression agents for acrylic acid units and agents for strong PEHA-P(St-MA) interaction.  相似文献   

17.
A new monomer, maleimidoethanoyl‐5‐fluorouracil (MIEFU), was synthesized by the reaction of maleimidoethanoyl chloride and 5‐fluorouracil (5‐FU). The homopolymer of MIEFU and its copolymers with acrylic acid (AA) or vinyl acetate (VAc) were prepared by photopolymerizations with 2,2‐dimethoxy‐2‐phenylacetophenone as an initiator at 25 °C for 48 h. The structures of the synthesized monomer and polymers were identified by Fourier transform infrared, 1H NMR, and 13C NMR spectroscopies and elemental analysis. The contents of the MIEFU units in poly(MIEFU‐co‐AA) and poly(MIEFU‐co‐VAc) were 18 and 30 mol %, respectively. The number‐average molecular weights of the synthesized polymers, as determined by gel permeation chromatography, ranged from 4900 to 9800. The in vitro cytotoxicities of the samples against mouse mammary carcinoma (FM3A), mouse leukemia (P388), and human histiocytic lymphoma (U937) cancer cell lines decreased in the following order: 5‐FU ≥ MIEFU > poly(MIEFU) > poly(MIEFU‐co‐AA) > poly(MIEFU‐co‐VAc). The in vivo antitumor activities of the polymers against Balb/C mice bearing the sarcoma 180 tumor cells were greater than those of 5‐FU at all the doses tested. The inhibitions of the SV40 DNA replication of the samples were much greater than that of the control. The synthesized monomer and polymers showed more antiangiogenesis activity than the control. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1247–1256, 2000  相似文献   

18.
A new class of water-soluble polypyrroles (PPy) has been developed. This was accomplished by oxidative matrix polymerization of pyrrole (Py) monomer with Ce(IV) in the presence of poly(acrylic acid) (PAA), poly(vinyl pyrrolidone) (PVP), and copolymers (CP) of vinyl pyrrolidone(VP) with acrylic acid (AA) [VP/AA; 25/75 (CP1), 50/50 (CP2), 75/25 (CP3)]. The soluble and insoluble interpolymer complexes were observed according to the nature (and conformation) of polymers in mixture, the ratio of components, and the pH of solutions. The role of PAA, PVP, CP, Py, and Ce(IV) concentrations, the order of component addition, and the pH of the solutions were investigated. The evidence and structural reasons for the formation of soluble interpolymer complexes of PPy with different polymers are discussed. It is proposed that the compactization of the polymer matrix as well as the disturbance of the regularity of reactive groups on the polymer chain decreases the possibility of formation of soluble interpolymer complexes. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 1255–1263, 1997  相似文献   

19.
3-Methacrylyloxymethyl-5,7,8-trimethylchroman-6-01 (MMC) was prepared, polymerized, and copolymerized. Poly-MMC, a reduced redox polymer, is stable to air and is oxidized readily. The redox behaviors of poly-MMC and copolymers with vinyl acetate were compared with that of 3-propionyloxymethyl-5,7,8-trimethylchroman-6-o1 (PMC), the model monomer. The titration curves of the polymers were flat as is usual with redox polymers, and showed higher midpoint potentials than the model monomer. One factor in this “polymer effect” was found to be adsorption of oxidized polymer on the electrode. But there seem still to be present other factors yet to be clarified.  相似文献   

20.
Phosphonic acid functional polymers are currently of interest because of their high proton conductivity in humidified and anhydrous systems. In addition, heterocyclic compounds are used in anhydrous proton conducting polymer membranes. In that study, a new copolymer based on 1‐vinyl‐1,2,4‐triazole (VTri) and diisopropyl‐p‐vinylbenzyl phosphonate (VBP) was synthesized, and their thermal, chemical, and proton conducting properties were investigated. The copolymers were synthesized by free radical copolymerization of the corresponding monomers at several monomer feed ratios to obtain P(VTri‐co‐VBP) copolymers. The copolymer samples were then hydrolyzed to produce poly(vinyl triazole‐co‐vinyl phosphonic acid) copolymers. The composition of the copolymers was determined by elemental analysis. The copolymerization and hydrolysis reactions were verified by Fourier transform infrared spectroscopy and ion exchange capacity measurements. Thermogravimetry analysis indicates that the copolymers are thermally stable up to 300°C. In order to increase the proton conductivity, the copolymers were doped with H3PO4 at several stoichometric ratios. The proton conductivity increases with triazole and phosphoric acid content. In the absence of humidity, the copolymer electrolyte, P(VTri‐co‐VBPA)1:0.5 X = 2, showed a proton conductivity of 0.005 S/cm at 150°C. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号