首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
A new mathematical model for finding the optimal harvesting policy of an inland fishery resource under incomplete information is proposed in this paper. The model is based on a stochastic control formalism in a regime‐switching environment. The incompleteness of information is due to uncertainties involved in the body growth rate of the fishery resource: a key biological parameter. Finding the most cost‐effective harvesting policy of the fishery resource ultimately reduces to solving a terminal and boundary value problem of a Hamilton‐Jacobi‐Bellman equation: a nonlinear and degenerate parabolic partial differential equation. A simple finite difference scheme for solving the equation is then presented, which turns out to be convergent and generates numerical solutions that comply with certain theoretical upper and lower bounds. The model is finally applied to the management of Plecoglossus altivelis, a major inland fishery resource in Japan. The regime switching in this case is due to the temporal dynamics of benthic algae, the main food of the fish. Model parameter values are identified from field measurement results in 2017. Our computational results clearly show the dependence of the optimal harvesting policy on the river environmental and biological conditions. The proposed model would serve as a mathematical tool for fishery resource management under uncertainties.  相似文献   

2.
Planning a cost‐efficient monitoring policy of stochastic processes arises from many industrial problems. We formulate a simple discrete‐time monitoring problem of continuous‐time stochastic processes with its applications to several industrial problems. A key in our model is a doubling trick of the variables, with which we can construct an algorithm to solve the problem. The cost‐efficient monitoring policy balancing between the observation cost and information loss is governed by an optimality equation of a fixed point type, which is solvable with an iterative algorithm based on the Feynman‐Kac formula. This is a new linkage between monitoring problems and mathematical sciences. We show regularity results of the optimization problem and present a numerical algorithm for its approximation. A problem having model ambiguity is presented as well. The presented model is applied to problems of environment, ecology, and energy, having qualitatively different target stochastic processes with each other.  相似文献   

3.
This paper deals with existence and uniqueness of a solution in viscosity sense, for a system of m variational partial differential inequalities with inter-connected obstacles. A particular case is the Hamilton-Jacobi-Bellmann system of the Markovian stochastic optimal m-states switching problem. The switching cost functions depend on (t,x). The main tool is the notion of systems of reflected backward stochastic differential equations with oblique reflection.  相似文献   

4.
Multi-dimensional BSDE with oblique reflection and optimal switching   总被引:1,自引:0,他引:1  
In this paper, we study a multi-dimensional backward stochastic differential equation (BSDE) with oblique reflection, which is a BSDE reflected on the boundary of a special unbounded convex domain along an oblique direction, and which arises naturally in the study of optimal switching problem. The existence of the adapted solution is obtained by the penalization method, the monotone convergence, and the a priori estimates. The uniqueness is obtained by a verification method (the first component of any adapted solution is shown to be the vector value of a switching problem for BSDEs). As applications, we apply the above results to solve the optimal switching problem for stochastic differential equations of functional type, and we give also a probabilistic interpretation of the viscosity solution to a system of variational inequalities.  相似文献   

5.
We develop a viscosity solution theory for a system of nonlinear degenerate parabolic integro-partial differential equations (IPDEs) related to stochastic optimal switching and control problems or stochastic games. In the case of stochastic optimal switching and control, we prove via dynamic programming methods that the value function is a viscosity solution of the IPDEs. In our setting the value functions or the solutions of the IPDEs are not smooth, so classical verification theorems do not apply.  相似文献   

6.
Maintaining the continuity of operations becomes increasingly important for systems that are subject to disruptions due to various reasons. In this paper, we study an inventory system operating under a (q, r) policy, where the supply can become inaccessible for random durations. The availability of the supply is modeled by assuming a single supplier that goes through ON and OFF periods of stochastic duration, both of which are modeled by phase‐type distributions (PTD). We provide two alternative representations of the state transition probabilities of the system, one with integral and the other employing Kolmogorov differential equations. We then use an efficient formulation for the analytical model that gives the optimal policy parameters and the long‐run average cost. An extensive numerical study is conducted, which shows that OFF time characteristics have a bigger impact on optimal policy parameters. The ON time characteristics are also important for critical goods if disasters can happen. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
The aim of this paper is to propose a multigrid method to obtain the numerical solution of the one‐dimensional nonlinear sine‐Gordon equation. The finite difference equations at all interior grid points form a large sparse linear system, which needs to be solved efficiently. The solution cost of this sparse linear system usually dominates the total cost of solving the discretized partial differential equation. The proposed method is based on applying a compact finite difference scheme of fourth‐order for discretizing the spatial derivative and the standard second‐order central finite difference method for the time derivative. The proposed method uses the Richardson extrapolation method in time variable. The obtained system has been solved by V‐cycle multigrid (VMG) method, where the VMG method is used for solving the large sparse linear systems. The numerical examples show the efficiency of this algorithm for solving the one‐dimensional sine‐Gordon equation. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
We consider a controlled system driven by a coupled forward–backward stochastic differential equation with a non degenerate diffusion matrix. The cost functional is defined by the solution of the controlled backward stochastic differential equation, at the initial time. Our goal is to find an optimal control which minimizes the cost functional. The method consists to construct a sequence of approximating controlled systems for which we show the existence of a sequence of feedback optimal controls. By passing to the limit, we establish the existence of a relaxed optimal control to the initial problem. The existence of a strict control follows from the Filippov convexity condition.  相似文献   

9.
We consider a make‐to‐stock production system with one product type, dynamic service policy, and delay‐sensitive customers. To balance the waiting cost of customers and holding cost of products, a dynamic production policy is adopted. If there is no customer waiting in the system, instead of shutting down, the system operates at a low production rate until a certain threshold of inventory is reached. If the inventory is empty and a new customer emerges, the system switches to a high production rate where the switching time is assumed to be exponentially distributed. Potential customers arrive according to the Poisson process. They are strategic in the sense that they make decisions on whether to stay for product or leave without purchase on the basis of on their utility value and the system information on whether the number of products is observable to customers or not. The strategic behavior is explored, and a Stackelberg game between production manager and customers is formulated where the former is the game leader. We find that the optimal inventory threshold minimizing the cost function can be obtained by a search algorithm. Numerical results demonstrate that the expected cost function in an observable case is not greater than that in an unobservable case. If a customer's delay sensitivity is relatively small, these two cases are entirely identical. With increasing of delay sensitivity, the optimal inventory threshold might be positive or zero, and hence, a demarcation line is depicted to determine when a make‐to‐stock policy is advantageous to the manager.  相似文献   

10.
We present efficient partial differential equation methods for continuous time mean‐variance portfolio allocation problems when the underlying risky asset follows a jump‐diffusion. The standard formulation of mean‐variance optimal portfolio allocation problems, where the total wealth is the underlying stochastic process, gives rise to a one‐dimensional (1D) nonlinear Hamilton–Jacobi–Bellman (HJB) partial integrodifferential equation (PIDE) with the control present in the integrand of the jump term, and thus is difficult to solve efficiently. To preserve the efficient handling of the jump term, we formulate the asset allocation problem as a 2D impulse control problem, 1D for each asset in the portfolio, namely the bond and the stock. We then develop a numerical scheme based on a semi‐Lagrangian timestepping method, which we show to be monotone, consistent, and stable. Hence, assuming a strong comparison property holds, the numerical solution is guaranteed to converge to the unique viscosity solution of the corresponding HJB PIDE. The correctness of the proposed numerical framework is verified by numerical examples. We also discuss the effects on the efficient frontier of realistic financial modeling, such as different borrowing and lending interest rates, transaction costs, and constraints on the portfolio, such as maximum limits on borrowing and solvency. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 664–698, 2014  相似文献   

11.
In this paper, we consider a Kudryashov‐Sinelshchikov equation that describes pressure waves in a mixture of a liquid and gas bubbles taking into consideration the viscosity of liquid and the heat transfer between liquid and gas bubbles. We show that this equation is rich in conservation laws. These conservation laws have been found by using the direct method of the multipliers. We apply the Lie group method to derive the symmetries of this equation. Then, by using the optimal system of 1‐dimensional subalgebras we reduce the equation to ordinary differential equations. Finally, some exact wave solutions are obtained by applying the simplest equation method.  相似文献   

12.
We prove a large deviation principle result for solutions of abstract stochastic evolution equations perturbed by small Lévy noise. We use general large deviations theorems of Varadhan and Bryc coupled with the techniques of Feng and Kurtz (2006) [15], viscosity solutions of integro-partial differential equations in Hilbert spaces, and deterministic optimal control methods. The Laplace limit is identified as a viscosity solution of a Hamilton-Jacobi-Bellman equation of an associated control problem. We also establish exponential moment estimates for solutions of stochastic evolution equations driven by Lévy noise. General results are applied to stochastic hyperbolic equations perturbed by subordinated Wiener process.  相似文献   

13.
We study a quasi-variational inequality system with unbounded solutions. It represents the Bellman equation associated with an optimal switching control problem with state constraints arising from production engineering. We show that the optimal cost is the unique viscosity solution of the system.This work was supported by the National Research Council of Argentina, Grant No. PID-BID 213.  相似文献   

14.
In this article, we apply the univariate multiquadric (MQ) quasi‐interpolation to solve the hyperbolic conservation laws. At first we construct the MQ quasi‐interpolation corresponding to periodic and inflow‐outflow boundary conditions respectively. Next we obtain the numerical schemes to solve the partial differential equations, by using the derivative of the quasi‐interpolation to approximate the spatial derivative of the differential equation and a low‐order explicit difference to approximate the temporal derivative of the differential equation. Then we verify our scheme for the one‐dimensional Burgers' equation (without viscosity). We can see that the numerical results are very close to the exact solution and the computational accuracy of the scheme is ??(τ), where τ is the temporal step. We can improve the accuracy by using the high‐order quasi‐interpolation. Moreover the methods can be generalized to the other equations. © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2006  相似文献   

15.
We address a general optimal switching problem over finite horizon for a stochastic system described by a differential equation driven by Brownian motion. The main novelty is the fact that we allow for infinitely many modes (or regimes, i.e. the possible values of the piecewise-constant control process). We allow all the given coefficients in the model to be path-dependent, that is, their value at any time depends on the past trajectory of the controlled system. The main aim is to introduce a suitable (scalar) backward stochastic differential equation (BSDE), with a constraint on the martingale part, that allows to give a probabilistic representation of the value function of the given problem. This is achieved by randomization of control, i.e. by introducing an auxiliary optimization problem which has the same value as the starting optimal switching problem and for which the desired BSDE representation is obtained. In comparison with the existing literature we do not rely on a system of reflected BSDE nor can we use the associated Hamilton–Jacobi–Bellman equation in our non-Markovian framework.  相似文献   

16.
研究了由Teugels鞅和与之独立的多维Brown运动共同驱动的正倒向随机控制系统的最优控制问题. 这里Teugels鞅是一列与L\'{e}vy 过程相关的两两强正交的正态鞅 (见Nualart, Schoutens 在2000年的结果). 在允许控制值域为一非空凸闭集假设下, 采用凸变分法和对偶技术获得了最优控制存在所满足的充分和必要条件. 作为应用, 系统研究了线性正倒向随机系统的二次最优控制问题(简记为FBLQ问题), 通过相应的随机哈密顿系统对最优控制 进行了对偶刻画. 这里的随机哈密顿系统是由Teugels鞅和多维Brown运动共同驱动的线性正倒向随机微分方程, 其由状态方程、伴随方程和最优控制的对偶表示共同来构成.  相似文献   

17.
This paper deals with a stochastic predator‐prey model in chemostat which is driven by Markov regime switching. For the asymptotic behaviors of this stochastic system, we establish the sufficient conditions for the existence of the stationary distribution. Then, we investigate, respectively, the extinction of the prey and predator populations. We explore the new critical numbers between survival and extinction for species of the dual‐threshold chemostat model. Numerical simulations are accomplished to confirm our analytical conclusions.  相似文献   

18.
The critical delays of a delay‐differential equation can be computed by solving a nonlinear two‐parameter eigenvalue problem. The solution of this two‐parameter problem can be translated to solving a quadratic eigenvalue problem of squared dimension. We present a structure preserving QR‐type method for solving such quadratic eigenvalue problem that only computes real‐valued critical delays; that is, complex critical delays, which have no physical meaning, are discarded. For large‐scale problems, we propose new correction equations for a Newton‐type or Jacobi–Davidson style method, which also forces real‐valued critical delays. We present three different equations: one real‐valued equation using a direct linear system solver, one complex valued equation using a direct linear system solver, and one Jacobi–Davidson style correction equation that is suitable for an iterative linear system solver. We show numerical examples for large‐scale problems arising from PDEs. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
This work is devoted to the study of a class of Hamilton–Jacobi–Bellman equations associated to an optimal control problem where the state equation is a stochastic differential inclusion with a maximal monotone operator. We show that the value function minimizing a Bolza-type cost functional is a viscosity solution of the HJB equation. The proof is based on the perturbation of the initial problem by approximating the unbounded operator. Finally, by providing a comparison principle we are able to show that the solution of the equation is unique.  相似文献   

20.
Two improved split‐step θ methods, which, respectively, named split‐step composite θ method and modified split‐step θ‐Milstein method, are proposed for numerically solving stochastic differential equation of Itô type. The stability and convergence of these methods are investigated in the mean‐square sense. Moreover, an approach to improve the numerical stability is illustrated by choices of parameters of these two methods. Some numerical examples show the accordance between the theoretical and numerical results. Further numerical tests exhibit not only the Hamiltonian‐preserving property of the improved split‐step θ methods for a stochastic differential system but also the positivity‐preserving property of the modified split‐step θ‐Milstein method for the Cox–Ingersoll–Ross model. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号