首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
As a class of biocompatible and biodegradable phase‐change materials, natural fatty acids have received considerable interest in recent years for temperature‐controlled release of drugs. However, the poor dispersibility and colloidal stability of their nanoparticles under physiological conditions place a major limitation on their applications in biomedicine. Herein, we report a facile method for encapsulating a mixture of two natural fatty acids (with a eutectic melting point at 39 °C) in a biocompatible, silica‐based nanocapsule to achieve both stable dispersion and controllable release of drugs. The nanocapsules have a well‐defined hole in the wall to ensure easy loading of fatty acids, together with multiple types of functional components such as therapeutics and near‐infrared dyes. The payloads can be released through the hole when the fatty acids are melted upon photothermal heating. The release profile can be controlled by varying the size of the hole and/or the duration of laser irradiation.  相似文献   

4.
5.
6.
7.
8.
9.
10.
The conversion of saturated fatty acids to high value chiral hydroxy‐acids and lactones poses a number of synthetic challenges: the activation of unreactive C?H bonds and the need for regio‐ and stereoselectivity. Here the first example of a wild‐type cytochrome P450 monooxygenase (CYP116B46 from Tepidiphilus thermophilus) capable of enantio‐ and regioselective C5 hydroxylation of decanoic acid 1 to (S)‐5‐hydroxydecanoic acid 2 is reported. Subsequent lactonization yields (S)‐δ‐decalactone 3 , a high value fragrance compound, with greater than 90 % ee. Docking studies provide a rationale for the high regio‐ and enantioselectivity of the reaction.  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
Polyunsaturated fatty acids (PUFAs) such as docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) are essential fatty acids. PUFA synthases are composed of three to four subunits and each create a specific PUFA without undesirable byproducts. However, detailed biosynthetic mechanisms for controlling final product profiles have been obscure. Here, the bacterial DHA and EPA synthases were carefully dissected by in vivo and in vitro experiments. In vitro analysis with two KS domains (KSA and KSC) and acyl‐acyl carrier protein (ACP) substrates showed that KSA accepted short‐ to medium‐chain substrates while KSC accepted medium‐ to long‐chain substrates. Unexpectedly, condensation from C18 to C20, the last elongation step in EPA biosynthesis, was catalyzed by KSA domains in both EPA and DHA synthases. Conversely, condensation from C20 to C22, the last elongation step for DHA biosynthesis, was catalyzed by the KSC domain in DHA synthase. KSC domains therefore determine the chain lengths.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号