首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1,2-Di(p-tolylimino)ethane (Ⅰ) and 1,2-Di(2,4-dimethylphenylimino)ethane (Ⅱ) were synthesized and their electrochemical behavior investigated in dimethylformamide using classical voltammetry, differential pulse voltammetry, cyclic voltammetry, chronoamperometry, controlled potential electrolysis and coulometry. Both bis-Schiff base ligands examined show a cathodic irreversible peak which corresponds to one-electron reduction of the substrate to form anion radical. According to the fact obtained from cyclic voltammetry, that the current function (ip/v^1/2) is a decreasing function of the scan rate, it can be concluded that there is a following coupling chemical reaction (EC mechanism). Thus, the most probable mechanism of electroreduction of both ligands is the coupling of two radicals to form a dimer.  相似文献   

2.
The electrochemical reduction of a series of nickel porphyrins with an increasing number of substituents was investigated in acetonitrile. A one‐electron reduction of [5,15‐bis(1‐ethylpropyl)porphyrinato]nickel(II) leads to π‐anion radicals and to efficient formation of phlorin anions, presumably by disproportionation and subsequent protonation of the doubly reduced species. The phlorin anion was identified by using cyclic voltammetry and UV/Vis and resonance Raman spectroelectrochemistry, complemented by quantum‐chemical calculations to assign the spectral signatures. The theoretical analysis of the potential‐energy landscape of the singly reduced species suggests a thermally activated intersystem crossing that populates the quartet state and thus lowers the energy barrier towards disproportionation channels. Structure–reactivity correlations are investigated by considering different substitution patterns of the investigated nickel(II) porphyrin cores, that is, for the porphyrin with additional β‐aryl ([5,15‐bis(1‐ethylpropyl)‐2,8,12,18‐tetra(p‐tolyl)porphyrinato]nickel(II)) and meso‐alkyl substitution ([5,10,15,20‐tetrakis(1‐ethylpropyl)porphyrinato]nickel(II)), no phlorin anion formation was observed under electrochemical conditions. This observation is correlated either to kinetic inhibition of the disproportionation reaction or to lower reactivity of the subsequently formed doubly reduced species towards protonation.  相似文献   

3.
IntroductionLow carbonlinearα olefinsareusedprimarilyasco monomersfortheproductionoflinearlowdensitypolyethylene (LLDPE) ,plasticizersandsyntheticlubri cants .Inrecentyears ,muchattentionhasbeenattractedtothefieldofcatalyticbehavioroflatetransitionmetalcom…  相似文献   

4.
Ethylene Oligomerization Catalyzed by Nickel(Ⅱ) Diimine Complexes   总被引:1,自引:0,他引:1  
Ethylene oligomerization has been investigated by using catalyst systems composed of nickel(II) diimine complexes (diimine = N, N′‐o‐phenylene bis (salicylideneaminato), N, N′‐o‐phenylenebisbenzal, N, N′‐ethylenebisbenzal) and ethylaluminoxane (EAO). The main products in toluene and at 110–200 °C were olefins with low carbon numbers (C4—C10). Effects of reaction temperature, Al/Ni molar ratio and reaction period on both the catalytic activity and product distribution were explored. The activity of 1.84 × 105 g of oligomer/(molNI · h), with 87.4% of selectivity to C4—C10 olefins, was attained at 200 °C in the reaction when a catalyst composed of NiCl2 (PhCH = o‐NC6H4N = CHPh) and EAO was used.  相似文献   

5.
The direct detection of nanoparticles is at the forefront of research owing to their environmental and toxicological applications. Herein, we studied the inherent electrochemistry of Ni and NiO nanoparticles and proposed a simple and direct electrochemical method for the determination of the concentrations of both nickel (Ni) and nickel oxide (NiO) nanoparticles in alkaline solution. A highly sensitive voltammetry technique was used to measure the oxidative signal of Ni(OH)2 that formed spontaneously on the surface of Ni and NiO nanoparticles in alkaline media. Detection limits of 220 μg mL?1 for Ni and 13 μg mL?1 for NiO nanoparticles were obtained. Ni and NiO nanoparticles are used as electrode modifiers or as electrochemical signal labels in various biosensing applications. Therefore, methods to rapidly quantify the amount of Ni and NiO nanoparticles are of widespread potential use.  相似文献   

6.
We established a strategy to synthesize novel unsymmetric 2,3‐diaza‐1,4‐dithiane ligands. Reaction of [Ni(acac)2] and trityl tetrakis(pentafluorophenyl)borate in the presence of these ligands afforded the corresponding salt‐type complexes. All new compounds were characterized by means of elemental analysis and NMR spectroscopy, and the complexes additionally by mass spectroscopy. NMR spectroscopic experiments on polymers generated by the symmetric ligand/trimethylaluminum catalyst system showed that all products were nearly linear, independent of the polymerization conditions. By contrast, polymers produced by the unsymmetric ligand/trimethylaluminum catalyst system under homopolymerization conditions were branched (15–24 ‰). Additionally, copolymerization experiments with propylene and 1‐hexene afforded copolymers with a branching level of up to 50 ‰.  相似文献   

7.
We report the catalytic anthraquinone‐mediated reduction of oxygen at a boron‐doped diamond electrode. Scheme of squares modelling confirms the existence of and reveals the role of the semiquinone intermediates, which are shown to have an exceptional reactivity towards oxygen (as compared to the di‐reduced anthraquinone).  相似文献   

8.
4-Morpholinoacetophenone thiosemicarbazone, MAPT, and its nickel(Ⅱ) and copper(Ⅱ) complexes have been prepared and characterized by elemental analysis, magnetic susceptibility, spectral methods (FT-IR, ^1H NMR) and cyclic voltammetry. Electrochemical behaviors of the complexes have been studied by cyclic voltammetry in DMF media showing metal centered reduction processes for both of them. The redox properties, nature of the electrode processes and the stability of the complexes were discussed. [Cu(MAPT)2]Cl2 complex shows Cu(Ⅱ)/Cu(Ⅰ) couple and quasi-reversible wave associated with the Cu(Ⅲ)/Cu(Ⅱ) process. The reduction/oxidation potential values depend on the structures of complexes. Also, the antimicrobial activities of these complexes were determined against S. aureus, E. coli and B. subtilis.  相似文献   

9.
A nickel α‐diimine catalyst was used for Grignard metathesis (GRIM) polymerization of 2,5‐dibromo 3‐hexylthiophene and 2‐bromo‐5‐iodo‐3‐hexylthiophene monomers. GRIM polymerization of 2‐bromo‐5‐iodo‐3‐hexylthiophene generated regioregular polymers with molecular weights ranging from 3 000 to 12 000 g · mol−1. The nickel α‐diimine catalyst was also successfully used for the GRIM polymerization of a bulky benzodithiophene monomer.

  相似文献   


10.
11.
Two vic-dioxime ligands (LxH2) containing morpholine group have been synthesized from 4-[2-(dimethylaminoethyl)] morpholine with anti-phenylchloroglyoxime or anti-monochloroglyoxime in absolute THF at -15 ℃. Reaction of two vic-dioxime ligands with MCl2·nH2O (M: Ni, Cu or Co and n=2 or 6) salts in 1 : 2 molar ratio afforded metal complexes of type [M(LxH)2] or [M(LxH)2·2H2O]. All of metal complexes are non-electrolytes as shown by their molar conductivities (Am) in DMF (dimethyl formamide) at 10^-3 mol·L^-1. Structures of the ligands and metal complexes have been solved by elemental analyses, FT-IR, UV-Vis, ^1H NMR and ^13C NMR, magnetic susceptibility measurements, molar conductivity measurements. Furthermore, redox properties of the metal complexes were investigated by cyclic voltammetry.  相似文献   

12.
Syntheses, and electrochemical properties of two novel complexes, [Cu(phendio)(L ‐Phe)(H2O)](ClO4) ·H2O (1) and [Ni(phendio)(Gly)(H2O)](ClO4)·H2O (2) (where phendio = 1,10‐phenanthroline‐5,6‐dione, L ‐Phe = L ‐phenylalanine, Gly = glycine), are reported. Single‐crystal X‐ray diffraction results of (1) suggest that this complex structure belongs to the orthorhombic crystal system. The electrochemical properties of free phendio and these complexes in phosphate buffer solutions in a pH range between 2 and 9 have been investigated using cyclic voltammetry. The redox potential of these compounds is strongly dependent on the proton concentration in the range of ? 0.3–0.4 V vs SCE (saturated calomel reference electrode). Phendiol reacts by the reduction of the quinone species to the semiquinone anion followed by reduction to the fully reduced dianion. At pH lower than 4 and higher than 4, reduction of phendio proceeds via 2e?/3H+ and 2e?/2H+ processes. For complexes (1) and (2), being modulated by the coordinated amino acid, the reduction of the phendio ligand proceeds via 2e?/2H+ and 2e?/H+ processes, respectively. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
A new bis(triphenylamine)‐type dicarboxylic acid monomer, N,N‐bis(4‐carboxyphenyl)‐N′,N′‐bis(4‐tert‐butylphenyl)‐1,4‐phenylenediamine, was prepared by a well‐established procedure and led to a new family of redox‐active aromatic polyamides with di‐tert‐butyl‐substituted N,N,N′,N′‐tetraphenylphenylenediamine (TPPA) segments. The resulting polyamides were amorphous with good solubility in many organic solvents, and most of them could be solution cast into flexible polymer films. The polyamides exhibited high thermal stability with glass‐transition temperatures in the range of 247–293 °C and 10% weight‐loss temperatures in excess of 500 °C. They showed well‐defined and reversible redox couples during oxidative scanning, with a strong color change from a colorless or pale yellowish neutral form to green and blue oxidized forms. They had enhanced redox stability and electrochromic performance when compared with the corresponding analogs without tert‐butyl substituents on the TPPA unit. The polyamide with TPPA units in both the diacid and diamine components shows multicolored electrochromic behavior. A polyamide containing both the cathodic coloring anthraquinone chromophore and the anodic coloring TPPA chromophore has the ability to show red, green, and blue states, toward single‐component RGB electrochromics. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

14.
15.
16.
Two new compounds, FcCHNC6H4COOH ( 1 ) and FcCHNCH2CH2OH ( 2 ) (Fc=C5H4FeC5H5), have been synthesized and characterized by elemental analyses, IR and 1H NMR spectroscopy, and ESI‐MS. Attempt has been made to explain their quasi‐reversible redox behavior evidenced by cyclic voltammetry using density functional theory (DFT) calculations. Light‐harvesting properties of both the compounds and also the starting material, FcCHO ( 3 ), have been studied using these compounds as photosensitizers in TiO2‐based dye‐sensitized solar cells having either a propylene carbonate‐based electrolyte or ionic liquid electrolyte, namely, 1‐propyl‐3‐methyl imidazolium iodide (PMII). Long‐term stability of the photocurrent output of the cell using compound 1 as photosensitizer has been monitored periodically over 1400 h.  相似文献   

17.
18.
By exploiting solvent and anion effects, [Cp2Ti]+ complexes for atom‐economical catalysis in single‐electron steps were developed and applied for the first time. These complexes constitute remarkably stable and active catalysts for radical arylations. The reaction kinetics and catalyst composition were studied by cyclic voltammetry and in situ IR spectroscopy.  相似文献   

19.
20.
Porous NiO nanosheets are successfully grown on nickel foam substrate through an in situ anodization by using molten KOH as the electrolyte. High‐purity NiO is directly obtained by this one‐step method without any subsequent treatment. The obtained NiO supported on nickel foam is used as a binder‐free electrode for a supercapacitor and its pseudocapacitive behavior has been investigated by cyclic voltammetry and galvanostatic charge–discharge tests in a 6 M aqueous solution of KOH. Electrochemical data demonstrates that this binder‐free electrode possesses ultrahigh capacitance (4.74 F cm?2 at 4 mA cm?2), excellent rate capability, and cycling stability. After 1000 cycles, the areal capacitance value is 9.4 % lower than the initial value and maintains 85.4 % of the maximum capacitance value.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号