首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dioxygen reactivity of a series of TMPA‐based copper(I) complexes (TMPA=tris(2‐pyridylmethyl)amine), with and without secondary‐coordination‐sphere hydrogen‐bonding moieties, was studied at ?135 °C in 2‐methyltetrahydrofuran (MeTHF). Kinetic stabilization of the H‐bonded [( TMPA)CuII(O2.?)]+ cupric superoxide species was achieved, and they were characterized by resonance Raman (rR) spectroscopy. The structures and physical properties of [( TMPA)CuII(N3?)]+ azido analogues were compared, and the O2.? reactivity of ligand–CuI complexes when an H‐bonding moiety is replaced by a methyl group was contrasted. A drastic enhancement in the reactivity of the cupric superoxide towards phenolic substrates as well as oxidation of substrates possessing moderate C?H bond‐dissociation energies is observed, correlating with the number and strength of the H‐bonding groups.  相似文献   

2.
The thermodynamic state of H2 adsorbed on Pt in the aqueous phase was determined by kinetic analysis of H2 reacting with D2O to HDO, HD, and D2, and by DFT‐based ab initio molecular dynamics simulations of H2 adsorption on Pt(111), Pt(110), and Pt nanoparticles. Dissociative adsorption of H2 on Pt is significantly weakened in the aqueous phase compared to adsorption at gas–solid interfaces. Water destabilizes the adsorbed H atoms, decreasing the heat of adsorption by 19–22 kJ while inducing an additional entropy loss of 50–70 J K?1. Upon dissociative adsorption of H2, the average distance of water from the Pt surface increases and the liquid adopts a structure that is more ordered than before close to the Pt surface, which limits the translation mobility of the adsorbed H atoms. The presence of hydrated hydronium ions next to the Pt surface further lowers the H?Pt bond strength.  相似文献   

3.
The hypercalins are dearomatized acylphloroglucinols with a pendant complex cyclopentane ring that exhibit activity against several cancer cell lines. We report the first total synthesis of (+)‐hypercalin C employing a convergent strategy that enabled the dissection of the essential structural features required for the observed anticancer activity. A strategic disconnection involving an unusual C –C Suzuki–Miyaura coupling with an α‐bromo enolether also revealed an unexpected C?H activation. This strategy targeted designed analogues along the synthetic route to address particular biological questions. These results support the hypothesis that hypercalin C may act as a proton shuttle with the dearomatized acylphloroglucinol moiety being essential for this activity.  相似文献   

4.
A precious‐metal‐ and Cd‐free photocatalyst system for efficient H2 evolution from aqueous protons with a performance comparable to Cd‐based quantum dots is presented. Rod‐shaped ZnSe nanocrystals (nanorods, NRs) with a Ni(BF4)2 co‐catalyst suspended in aqueous ascorbic acid evolve H2 with an activity up to 54±2 mmol gZnSe?1 h?1 and a quantum yield of 50±4 % (λ=400 nm) under visible light illumination (AM 1.5G, 100 mW cm?2, λ>400 nm). Under simulated full‐spectrum solar irradiation (AM 1.5G, 100 mW cm?2), up to 149±22 mmol gZnSe?1 h?1 is generated. Significant photocorrosion was not noticeable within 40 h and activity was even observed without an added co‐catalyst. The ZnSe NRs can also be used to construct an inexpensive delafossite CuCrO2 photocathode, which does not rely on a sacrificial electron donor. Immobilized ZnSe NRs on CuCrO2 generate photocurrents of around ?10 μA cm?2 in an aqueous electrolyte solution (pH 5.5) with a photocurrent onset potential of approximately +0.75 V vs. RHE. This work establishes ZnSe as a state‐of‐the‐art light absorber for photocatalytic and photoelectrochemical H2 generation.  相似文献   

5.
Materials in the family of Prussian blue analogues (C3H5N2)2K[ M (CN)6], where C3H5N2 is the imidazolium ion and M =Fe, Co, undergo two phase transitions with temperature; at low temperatures the imidazolium cations have an ordered configuration (C 2/c ), while in the intermediate‐ and high‐temperature phases (both previously reported as ) they are dynamically disordered. We show from high‐resolution powder neutron diffraction data that the high‐temperature phase has zero area thermal expansion in the ab ‐plane. Supported by Landau theory and single‐crystal X‐ray diffraction data, we re‐evaluate the space group symmetry of the intermediate‐temperature phase to . This reveals that the low‐to‐intermediate temperature transition is due to competition between two different tilt patterns of the [ M (CN)6]3− ions. Controlling the relative stabilities of these tilt patterns offers a potential means to tune the exploitable electric behaviour that arises from motion of the imidazolium guest.  相似文献   

6.
The first single‐diamond cubic phase in a liquid crystal is reported. This skeletal structure with the space group is formed by self‐assembly of bolaamphiphiles with swallow‐tailed lateral chains. It consists of bundles of π‐conjugated p‐terphenyl rods fused into an infinite network by hydrogen‐bonded spheres at tetrahedral four‐way junctions. We also present a quantitative model relating molecular architecture to the space‐filling requirements of six possible bicontinuous cubic phases, that is, the single‐ and double‐network versions of gyroid, diamond, and “plumber′s nightmare”.  相似文献   

7.
Rate constants for the reactions of muonium (Mu) (the ultralight isotope of the hydrogen atom) with H2O2 in H2O and D2O2 in D2O have been determined at various temperatures and pH (pD) values. The data are consistent with the three reactions: , , and the equivalent for the deuterated entities. A significant positive H/D isotope effect was found for the undissociated peroxide, while for the anions the effect was negligible or slightly in the opposite direction. In addition, for concentrated solutions of peroxide a study of the muon spin polarization as a function of applied transverse magnetic field yielded results consistent with the rate constants determined from the direct decay measurements, and indicated that the reaction products are diamagnetic, most likely MuH and MuOH, i. e., no muoniated radical products are formed. These results are potentially relevant for management of the radiolysis products in nuclear industry.  相似文献   

8.
Although electrocatalysts based on transition metal phosphides (TMPs) with cationic/anionic doping have been widely studied for hydrogen evolution reaction (HER), the origin of performance enhancement still remains elusive mainly due to the random dispersion of dopants. Herein, we report a controllable partial phosphorization strategy to generate CoP species within the Co‐based metal‐organic framework (Co‐MOF). Density functional theory calculations and experimental results reveal that the electron transfer from CoP to Co‐MOF through N‐P/N‐Co bonds could lead to the optimized adsorption energy of H2O (ΔG ) and hydrogen (ΔGH*), which, together with the unique porous structure of Co‐MOF, contributes to the remarkable HER performance with an overpotential of 49 mV at a current density of 10 mA cm?2 in 1 m phosphate buffer solution (PBS, pH 7.0). The excellent catalytic performance exceeds almost all the documented TMP‐based and non‐noble‐metal‐based electrocatalysts. In addition, the CoP/Co‐MOF hybrid also displays Pt‐like performance in 0.5 m H2SO4 and 1 m KOH, with the overpotentials of 27 and 34 mV, respectively, at a current density of 10 mA cm?2.  相似文献   

9.
A three‐coordinate low‐spin cobalt(I) complex generated using a pincer ligand is presented. Since an empty orbital is sterically exposed at the site trans to the N donor of an acridane moiety, the cobalt(I) center accepts the coordination of various donors such as H2 and PhSiH3 revealing σ‐complex formation. At this low‐spin cobalt(I) site, homolysis of H–H and Si?H bonds preferentially occurs via bimolecular hydrogen atom transfer instead of two‐electron oxidative addition. When the resulting CoII–H species was exposed to N2, H2 evolution readily occurs at ambient conditions. These results suggest single‐electron processes are favored at the structurally rigidified cobalt center.  相似文献   

10.
Inorganic macrocycles, based on non‐carbon backbones, present exciting synthetic challenges in the systematic assembly of inorganic molecules, as well as new avenues in host–guest and supramolecular chemistry. Here we demonstrate a new high‐yielding modular approach to a broad range of trimeric and hexameric S‐ and Se‐bridged inorganic macrocycles based on cyclophosphazane frameworks, using the building blocks [S=(H)P(μ‐NR)]2. The method involves the in situ generation of the key intermediate [E (S )P(μ‐NR)]22−(E=S, Se) dianion, which can be reacted with electrophilic [ClP(μ‐NR)]2 to give PIII/PV hexameric rings or reacted with I2 to give trimeric PV variants. Important issues which are highlighted in this work are the competitive bridging ability of S versus Se in these systems and the synthesis of the first air‐stable and chiral inorganic macrocycles.  相似文献   

11.
Selective synthesis of higher oxygenates (linear α‐alcohols and α‐aldehydes, C OH) from syngas is highly attractive but remains challenging owing to the low C OH selectivity and low catalytic stability. Herein we introduce a multifunctional catalyst composed of CoMn and CuZnAlZr oxides that dramatically increased the oxygenates selectivity to 58.1 wt %, where more than 92.0 wt % of the produced oxygenates are C OH. Notably, the total selectivity to value‐added chemicals including oxygenates and olefins reached 80.6 wt % at CO conversion of 29.0 % with high stability. The appropriate component proximity can effectively suppress the formation of the undesired C1 products, and the selectively propulsion of reaction network by synergetic effect of different components contributes to the enhanced selectivity to higher oxygenates. This work provides an alternative strategy for the rational design of new catalysts for direct conversion of syngas into higher oxygenates with co‐production of olefins.  相似文献   

12.
Complex [PtMe2(PMe2Ar )] ( 1 ), which contains a tethered terphenyl phosphine (Ar =2,6‐(2,6‐i Pr2C6H3)2C6H3), reacts with [H(Et2O)2]BArF (BArF=B[3,5‐(CF3)2C6H3]4) to give the solvent (S) complex [PtMe(S)(PMe2Ar )]+ ( 2⋅S ). Although the solvent molecule is easily displaced by a Lewis base (e.g., CO or C2H4) to afford the corresponding adducts, treatment of 2⋅S with C2H2 yielded instead the allyl complex [Pt(η3‐C3H5)(PMe2Ar )]+ ( 6 ) via the alkyne intermediate [PtMe(η2‐C2H2)(PMe2Ar )]+ ( 5 ). Deuteration experiments with C2D2, and kinetic and theoretical investigations demonstrated that the conversion of 5 into 6 involves a PtII‐promoted HC≡CH to :C=CH2 tautomerization in preference over acetylene migratory insertion into the Pt−Me bond.  相似文献   

13.
We report the characterization of an S= iron π‐complex, [Fe(η6‐IndH)(depe)]+ (Ind=Indenide (C9H7?), depe=1,2‐bis(diethylphosphino)ethane), which results via C?H elimination from a transient FeIII hydride, [Fe(η32‐Ind)(depe)H]+. Owing to weak M?H/C?H bonds, these species appear to undergo proton‐coupled electron transfer (PCET) to release H2 through bimolecular recombination. Mechanistic information, gained from stoichiometric as well as computational studies, reveal the open‐shell π‐arene complex to have a BDFEC‐H value of ≈50 kcal mol?1, roughly equal to the BDFEFe‐H of its FeIII?H precursor (ΔG°≈0 between them). Markedly, this reactivity differs from related Fe(η5‐Cp/Cp*) compounds, for which terminal FeIII?H cations are isolable and have been structurally characterized, highlighting the effect of a benzannulated ring (indene). Overall, this study provides a structural, thermochemical, and mechanistic foundation for the characterization of indenide/indene PCET precursors and outlines a valuable approach for the differentiation of a ring‐ versus a metal‐bound H‐atom by way of continuous‐wave (CW) and pulse EPR (HYSCORE) spectroscopic measurements.  相似文献   

14.
Hole or electron doping of phases prepared by topochemical reactions (e.g. anion deintercalation or anion-exchange) is extremely challenging as these low-temperature conversion reactions are typically very sensitive to the electron counts of precursor phases. Herein we report the successful hole and electron doping of the transition-metal oxyhydride LaSr3NiRuO4H4 by first preparing precursors in the range LaxSr4−xNiRuO8 0.5<x<1.4 and then converting into the corresponding LaxSr4−xNiRuO4H4 phases. This is particularly noteworthy as the (Ni/Ru)H2 sheets in the LaxSr4−xNiRuO4H4 phases are structurally analogous to the CuO2 sheets in cuprate superconductors and hole doping (Ni1+/2+, Ru2+) or electron doping (Ni2+, Ru1+/2+) yields materials with partial occupancy in Ni/Ru –H 1s bands which are analogous to the partially occupied Cu –O 2p bands present in the CuO2 sheets of doped superconducting cuprates.  相似文献   

15.
A dual‐function material in which ferroelectricity and spin crossover coexist in the same temperature range has been obtained. Our synthetic strategy allows the construction of acentric crystal structures in a predictable way and is based on the high directionality of hydrogen bonds. The well‐known iron(II) spin crossover complex [Fe(bpp)2]2+ (bpp=2,6‐bis(pyrazol‐3‐yl)pyridine), a four‐fold noncentrosymmetric H‐bond donor, was combined with a disymmetric H‐bond acceptor such as the isonicotinate (isonic) anion to afford [Fe(bpp)2](isonic)2⋅2 H2O. This low‐spin iron(II) compound crystallizes in the acentric nonpolar I space group and shows piezoelectricity and SHG properties. Upon dehydration, it undergoes a single‐crystal to single‐crystal structural rearrangement to a monoclinic polar Pc phase that is ferroelectric and exhibits spin crossover.  相似文献   

16.
Reported here is an entirely new application of experimental electron density (EED) in the study of magnetic anisotropy of single-molecule magnets (SMMs). Among those SMMs based on one single transition metal, tetrahedral CoII-complexes are prominent, and their large zero-field splitting arises exclusively from coupling between the d and dxy orbitals. Using very low temperature single-crystal synchrotron X-ray diffraction data, an accurate electron density (ED) was obtained for a prototypical SMM, and the experimental d-orbital populations were used to quantify the dxy-d coupling, which simultaneously provides the composition of the ground-state Kramers doublet wave function. Based on this experimentally determined wave function, an energy barrier for magnetic relaxation in the range 193–268 cm−1 was calculated, and is in full accordance with the previously published value of 230 cm−1 obtained from near-infrared spectroscopy. These results provide the first clear and direct link between ED and molecular magnetic properties.  相似文献   

17.
We report a new molecular‐design principle for creating double‐gyroid nanostructured molecular assemblies based on atropisomerization. Ionic amphiphiles containing two imidazolium rings close to each other were designed and synthesized. NMR data revealed that the rotation of the imidazolium rings is restricted, with an activation energy as high as 63 kJ mol?1 in DMSO‐d6 solution (DFT prediction for a model compound in the vacuum: 90–100 kJ mol?1). Due to the restricted rotation, the amphiphiles feature “double” atropisomeric axes in their ionic segments and form three stable atropisomers: meso, R, and S. These isomers co‐organize into ‐type bicontinuous cubic liquid‐crystalline mesophases through nanosegregation of the ionic and non‐ionic parts. Considering the intrinsic characteristic of ‐type bicontinuous cubic structures that they are composed of intertwined right‐ and left‐handed single gyroids, we propose that the simultaneous presence of both R‐ and S‐atropisomers is an important contributor to the formation of double‐gyroid structures.  相似文献   

18.
Magic‐angle spinning (MAS) is an essential ingredient in a wide variety of solid‐state NMR experiments. The standard procedures to adjust the rotor angle are not highly accurate, resulting in a slight misadjustment of the rotor from the magic angle ( ) on the order of a few millidegrees. This small missetting has no significant impact on the overall spectral resolution, but is sufficient to reintroduce anisotropic interactions. Shown here is that site‐specific 1H‐15N dipolar couplings can be accurately measured in a heavily deuterated protein. This method can be applied at arbitrarily high MAS frequencies, since neither rotor synchronization nor particularly high radiofrequency field strengths are required. The off‐MAS method allows the quantification of order parameters for very dynamic residues, which often escape an analysis using existing methods.  相似文献   

19.
20.
Selective C –C couplings are powerful strategies for the rapid and programmable construction of bi- or multiaryls. To this end, the next frontier of synthetic modularity will likely arise from harnessing the coupling space that is orthogonal to the powerful Pd-catalyzed coupling regime. This report details the realization of this concept and presents the fully selective arylation of aryl germanes (which are inert under Pd0/PdII catalysis) in the presence of the valuable functionalities C−BPin, C−SiMe3, C−I, C−Br, C−Cl, which in turn offer versatile opportunities for diversification. The protocol makes use of visible light activation combined with gold catalysis, which facilitates the selective coupling of C−Ge with aryl diazonium salts. Contrary to previous light-/gold-catalyzed couplings of Ar–N2+, which were specialized in Ar–N2+ scope, we present conditions to efficiently couple electron-rich, electron-poor, heterocyclic and sterically hindered aryl diazonium salts. Our computational data suggest that while electron-poor Ar–N2+ salts are readily activated by gold under blue-light irradiation, there is a competing dissociative deactivation pathway for excited electron-rich Ar–N2+, which requires an alternative photo-redox approach to enable productive couplings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号