首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
A comparison of ultra high performance supercritical fluid chromatography, ultra high performance liquid chromatography, and gas chromatography for the separation of synthetic cathinones has been conducted. Nine different mixtures of bath salts were analyzed in this study. The three different chromatographic techniques were examined using a general set of controlled synthetic cathinones as well as a variety of other synthetic cathinones that exist as positional isomers. Overall 35 different synthetic cathinones were analyzed. A variety of column types and chromatographic modes were examined for developing each separation. For the ultra high performance supercritical fluid chromatography separations, analyses were performed using a series of Torus and Trefoil columns with either ammonium formate or ammonium hydroxide as additives, and methanol, ethanol or isopropanol organic solvents as modifiers. Ultra high performance liquid chromatographic separations were performed in both reversed phase and hydrophilic interaction chromatographic modes using SPP C18 and SPP HILIC columns. Gas chromatography separations were performed using an Elite‐5MS capillary column. The orthogonality of ultra high performance supercritical fluid chromatography, ultra high performance liquid chromatography, and gas chromatography was examined using principal component analysis. For the best overall separation of synthetic cathinones, the use of ultra high performance supercritical fluid chromatography in combination with gas chromatography is recommended.  相似文献   

2.
Sample preparation is still considered as the bottleneck of the whole analytical procedure, and efforts has been conducted towards the automation, improvement of sensitivity and accuracy, and low comsuption of organic solvents. Development of online sample preparation techniques (SP) coupled with liquid chromatography (LC) is a promising way to achieve these goals, which has attracted great attention. This article reviews the recent advances on the online SP-LC techniques. Various online SP techniques have been described and summarized, including solid-phase-based extraction, liquid-phase-based extraction assisted with membrane, microwave assisted extraction, ultrasonic assisted extraction, accelerated solvent extraction and supercritical fluids extraction. Specially, the coupling approaches of online SP-LC systems and the corresponding interfaces have been discussed and reviewed in detail, such as online injector, autosampler combined with transport unit, desorption chamber and column switching. Typical applications of the online SP-LC techniques have been summarized. Then the problems and expected trends in this field are attempted to be discussed and proposed in order to encourage the further development of online SP-LC techniques.  相似文献   

3.
Saponins are widespread secondary metabolites with various beneficial properties: fungicidal, antibacterial, antiviral, and anticancer. Alfalfa saponin molecules contain mainly: medicagenic acid, hederagenin, bayogenin, and soyasapogenol B. Structural diversity of saponins makes their determination in Medicago sativa extracts very difficult. The most popular determination technique is high‐performance liquid chromatography applied with evaporative light scattering detection. Qualitative and quantitative analysis of sapogenins from Medicago sativa by high‐performance liquid chromatography with evaporative light scattering detection required hydrolysis and purification of extracts obtained by supercritical fluid extraction. Hydrolysis of saponins with concentrated hydrochloric acid provided high concentration of medicagenic acid. In the purification process, satisfactory results were obtained for solid‐phase extraction using octadecyl. Recoveries were from 71 to 99% with a standard deviation from 2 to 8. Hydrolysis with concentrated hydrochloric acid was the only method that allowed identification of all four analyzed sapogenins. Moreover, it is characterized by a short time of preparation, simplicity of execution, a small amount of the sample and solvents. The hydrolysis and purification methods coupled with high‐performance liquid chromatography and evaporative light scattering detection can be successfully used for qualitative and quantitative analysis of the main saponins present in Medicago sativa plant extracts obtained by supercritical fluid extraction.  相似文献   

4.
A method based on matrix solid‐phase dispersion extraction followed by ultra high performance liquid chromatography with tandem mass spectrometry is presented for the extraction and determination of phenolic compounds in Equisetum palustre. This method combines the high efficiency of matrix solid‐phase dispersion extraction and the rapidity, sensitivity, and accuracy of ultra high performance liquid chromatography with tandem mass spectrometry. The influential parameters of the matrix solid‐phase dispersion extraction were investigated and optimized. The optimized conditions were as follows: silica gel was selected as dispersing sorbent, the ratio of silica gel to sample was selected to be 2:1 (400/200 mg), and 8 mL of 80% methanol was used as elution solvent. Furthermore, a fast and sensitive ultra high performance liquid chromatography with tandem mass spectrometry method was developed for the determination of nine phenolic compounds in E. palustre. This method was carried out within <6 min, and exhibited satisfactory linearity, precision, and recovery. Compared with ultrasound‐assisted extraction, the proposed matrix solid‐phase dispersion procedure possessed higher extraction efficiency, and was more convenient and time saving with reduced requirements on sample and solvent amounts. All these results suggest that the developed method represents an excellent alternative for the extraction and determination of active components in plant matrices.  相似文献   

5.
A simple and effective sample preparation process based on miniaturized matrix solid‐phase dispersion was developed for simultaneous determination of phenolic acids (gallic acid, chlorogenic acid, ferulic acid, 3,5‐dicaffeoylqunic acid, 1,5‐dicaffeoylqunic acid, rosmarinic acid, lithospermic acid, and salvianolic acid B), flavonoids (kaempferol‐3‐O‐rutinoside, calycosin, and formononetin), lactones (ligustilide and butyllidephthalide), monoterpenoids (paeoniflorin), phenanthraquinones (cryptotanshinone), and furans (5‐hydroxymethylfurfural) in Naoxintong capsule by ultra high‐performance liquid chromatography. The optimized condition was that 25 mg Naoxintong powder was blended homogeneously with 100 mg Florisil PR for 4 min. One milliliter of methanol/water (75:25, v/v) acidified by 0.05% formic acid was selected to elute all components. It was found that the recoveries of the six types of components ranged from 61.36 to 96.94%. The proposed miniaturized matrix solid‐phase dispersion coupled with ultra high‐performance liquid chromatography was successfully applied to simultaneous determination of the six types of components in Naoxintong capsules. The results demonstrated that the proposed miniaturized matrix solid‐phase dispersion coupled with ultra high‐performance liquid chromatography could be used as an environmentally friendly tool for the extraction and determination of multiple bioactive components in natural products.  相似文献   

6.
In this study, a method coupling turbulent flow chromatography with online solid‐phase extraction and high‐performance liquid chromatography with tandem mass spectrometry was developed for analyzing the lignans in Magnoliae Flos. By the online pretreatment of turbulent flow chromatography solid‐phase extraction, the impurities removal and analytes concentration were automatically processed, and the lignans were separated rapidly and well. Seven lignans of Magnoliae Flos including epieudesmin, magnolin, 1‐irioresinol‐B‐dimethyl ether, epi‐magnolin, fargesin aschantin, and demethoxyaschantin were identified by comparing their retention behavior, UV spectra, and mass spectra with those of reference substances or literature data. The developed method was validated, and the good results showed that the method was not only automatic and rapid, but also accurate and reliable. The turbulent flow chromatography with online solid‐phase extraction and high‐performance liquid chromatography with tandem mass spectrometry method holds a high potential to become an effective method for the quality control of lignans in Magnoliae Flos and a useful tool for the analysis of other complex mixtures.  相似文献   

7.
An industrial MCM‐41‐miniaturized matrix solid‐phase dispersion extraction coupled with response surface methodology was explored to determine L‐epicatechin, typhaneoside, isorhamnetin‐3‐O‐neohespeidoside, naringenin, kaempferol, and isorhamnetin in Pollen typhae by ultra‐high performance liquid chromatography connected to a photodiode array detection. Several variables were optimized in detail, including mesh number of sieve, type of adsorbent, mass ratio of sample to adsorbent, grinding time, methanol concentration, and elution volume. Central composite design was applied to optimize the best conditions for the maximum yields of the total flavonoids. The results displayed a good linear relationship (R > 0.9992) and the recoveries ranged from 92.9 to 103% (RSD < 4.53%) of the six flavonoids. The optimal method with high efficiency and low consumption was obviously better than heating reflux and ultrasonic extraction. It was proven that the developed industrial MCM‐41‐miniaturized matrix solid‐phase dispersion extraction coupled with simple ultra‐high performance liquid chromatography method could be a rapid and efficient tool for extraction and determination of flavonoids in natural products.  相似文献   

8.
9.
复杂基体中痕量多环芳烃分析测定方法的研究进展   总被引:15,自引:0,他引:15  
董新艳  杨亦文  任其龙 《色谱》2005,23(6):609-615
介绍了环境样品(水和土壤)以及植物油中痕量多环芳烃的分析检测方法。对样品的预处理过程和分析方法做了评价。采用一些新的预处理方法(包括液相色谱法、固相萃取法、超临界二氧化碳萃取法),并结合色谱-质谱在线联用分析检测方法能够获得比较理想的分析结果。引用文献52篇。  相似文献   

10.
Enantiomeric pairs of triticonazole have been successfully separated by supercritical fluid chromatography coupled with a tris(3,5‐dimethylphenylcarbamoyl) cellulose‐coated chiral stationary phase in this work. The effects of co‐solvent, dissolution solvent, flow rate, backpressure, and column temperature have been studied in detail with respect to retention, selectivity, and resolution of triticonazole. As indicated, the co‐solvents mostly affected the retention factors and resolution, due to the different molecular structure and polarity. In addition, the dissolution solvents, namely, chloromethanes and alcohols, have been also important for enantioseparation because of the different interaction with stationary phase. Higher flow rate and backpressure led to faster elution of the triticonazole molecules, and the change of column temperature showed slight effect on the resolution of triticonazole racemate. Moreover, a comparative separation experiment between supercritical fluid chromatography and high performance liquid chromatography revealed that chiral supercritical fluid chromatography gave the 3.5 times value of Rs/tR2 than high performance liquid chromatography, which demonstrated that supercritical fluid chromatography had much higher separation efficiency.  相似文献   

11.
Recently, supercritical fluid chromatography coupled to mass spectrometry has gained attention as a fast and useful technology applied to the carotenoids analysis. However, no reports are available in the literature on the direct online extraction and determination by supercritical fluid extraction with chromatography and mass spectrometry. The aim of this research was the development of an online method coupling supercritical fluid extraction and supercritical fluid chromatography for a detailed targeted native carotenoids characterization in red habanero peppers. The online nature of the system, compared to offline approaches, improves run‐to‐run precision, enables the setting of batch‐type applications, and reduces the risks of sample contamination. The extraction has been optimized using different temperatures, starting from 40°C up to 80°C. Multiple extractions, until depletion, were performed on the same sample to evaluate the extraction yield. The range of the first extraction yield, carried out at 80°C, which was the best extraction temperature, was 37.4–65.4%, with a %CV range of 2–12. Twenty‐one targeted analytes were extracted and identified by the developed methodology in less than 17 min, including free, monoesters, and diesters carotenoids, in a very fast and efficient way. Quantification of the β‐carotene was carried out by using the optimized conditions.  相似文献   

12.
Solid‐phase extraction coupled with dispersive liquid–liquid microextraction was developed as an ultra‐preconcentration method for the determination of four organophosphorus pesticides (isocarbophos, parathion‐methyl, triazophos and fenitrothion) in water samples. The analytes considered in this study were rapidly extracted and concentrated from large volumes of aqueous solutions (100 mL) by solid‐phase extraction coupled with dispersive liquid–liquid microextraction and then analyzed using high performance liquid chromatography. Experimental variables including type and volume of elution solvent, volume and flow rate of sample solution, salt concentration, type and volume of extraction solvent and sample solution pH were investigated for the solid‐phase extraction coupled with dispersive liquid–liquid microextraction with these analytes, and the best results were obtained using methanol as eluent and ethylene chloride as extraction solvent. Under the optimal conditions, an exhaustive extraction for four analytes (recoveries >86.9%) and high enrichment factors were attained. The limits of detection were between 0.021 and 0.15 μg/L. The relative standard deviations for 0.5 μg/L of the pesticides in water were in the range of 1.9–6.8% (n = 5). The proposed strategy offered the advantages of simple operation, high enrichment factor and sensitivity and was successfully applied to the determination of four organophosphorus pesticides in water samples.  相似文献   

13.
In recent years, essential oils have received a growing interest because of the positive health effects of their novel characteristics such as antibacterial, antifungal, and antioxidant activities. For the extraction of plant‐derived essential oils, there is the need of advanced analytical techniques and innovative methodologies. An exhaustive study of hydrodistillation, supercritical fluid extraction, ultrasound‐ and microwave‐assisted extraction, solid‐phase microextraction, pressurized liquid extraction, pressurized hot water extraction, liquid–liquid extraction, liquid‐phase microextraction, matrix solid‐phase dispersion, and gas chromatography (one‐ and two‐dimensional) hyphenated with mass spectrometry for the extraction through various plant species and analysis of essential oils has been provided in this review. Essential oils are composed of mainly terpenes and terpenoids with low‐molecular‐weight aromatic and aliphatic constituents that are particularly important for public health.  相似文献   

14.
The implementation of columns packed with sub-2 μm particles in supercritical fluid chromatography (SFC) is described using neat carbon dioxide as the mobile phase. A conventional supercritical fluid chromatograph was slightly modified to reduce extra column band broadening. Performances of a column packed with 1.8 μm C18-bonded silica particles in SFC using neat carbon dioxide as the mobile phase were compared with results obtained in ultra high performance liquid chromatography (UHPLC) using a dedicated chromatograph. As expected and usual in SFC, higher linear velocities than in UHPLC must be applied in order to reach optimal efficiency owing to higher diffusion coefficient of solutes in the mobile phase; similar numbers of theoretical plates were obtained with both techniques. Very fast separations of hydrocarbons are presented using two different alkyl-bonded silica columns.  相似文献   

15.
An improved sample preparation method was developed to enhance acrylamide recovery in high‐fat foods. Prior to concentration, distilled deionized water was added to protect acrylamide from degradation, resulting in a higher acrylamide recovery rate from fried potato chips. A Chrome‐Matrix C18 column (2.6 μm, 2.1 × 100 mm) was used for the first time to analyze acrylamide levels using ultra high performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry, displaying good separation of acrylamide from interference. A solid‐phase extraction procedure was avoided, and an average recovery of >89.00% was achieved from different food matrices for three different acrylamide spiking levels. Good reproducibility was observed, with an intraday relative standard deviation of 0.04–2.38%, and an interday relative standard deviation of 2.34–3.26%. Thus, combining the improved sample preparation method for acrylamide analysis with the separation on a Chrome‐Matrix C18 column (2.6 μm, 2.1 × 100 mm) using ultra high performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry is highly useful for analyzing acrylamide levels in complex food matrices.  相似文献   

16.
This report presents the first ultra high performance supercritical fluid chromatography diode array detector based assay for simultaneous determination of iridoid glucosides, flavonoid glucuronides, and phenylpropanoid glycosides in Verbena officinalis (Verbenaceae) extracts. Separation of the key metabolites was achieved in less than 7 min on an Acquity UPC2 Torus Diol column using a mobile phase gradient comprising subcritical carbon dioxide and methanol with 0.15% phosphoric acid. Method validation for seven selected marker compounds (hastatoside, verbenalin, apigenin‐7‐O‐glucuronide, luteolin‐7‐O‐glucuronide, apigenin‐7‐O‐diglucuronide, verbascoside, and luteolin‐7‐O‐diglucuronide) confirmed the assay to be sensitive, linear, precise, and accurate. Head‐to‐head comparison to an ultra high performance liquid chromatography comparator assay did prove the high orthogonality of the methods. Quantitative result equivalence was evaluated by Passing‐Bablok‐correlation and Bland‐Altman‐plot analysis. This cross‐validation revealed, that one of the investigated marker compound peaks was contaminated in the ultra high performance liquid chromatography assay by a structurally related congener. Taken together, it was proven that the ultra high performance supercritical fluid chromatography instrument setup with its orthogonal selectivity is a true alternative to conventional reversed phase liquid chromatography in quantitative secondary metabolite analysis. For regulatory purposes, assay cross‐validation with highly orthogonal methods seems a viable approach to avoid analyte overestimation due to coeluting, analytically indistinguishable contaminants.  相似文献   

17.
An in vivo study of efavirenz metabolites in rats and human patients with ultra high performance liquid chromatography coupled with quadrupole time‐of‐flight tandem mass spectrometry combined with MetabolitePilotMT software is reported for the first time. Considering the polarity differences between the metabolites, solid‐phase extraction and protein precipitation were both applied as a part of the sample preparation method. The structures of the metabolites and their fragment ions were identified or tentatively characterized based on the accurate mass and MS2 data. As a result, a total of 15 metabolites, including 11 from rat samples and 13 from human samples, were identified or tentatively characterized. Two metabolites and several new metabolism pathways are reported for the first time. This study provides a practical approach for identifying complicated metabolites through the rapid and reliable ultra high performance liquid chromatography coupled with quadrupole time‐of‐flight tandem mass spectrometry technique, which could be widely used for the investigation of drug metabolites.  相似文献   

18.
This paper presents a method for the determination of acebutolol, betaxolol, bisoprolol, metoprolol, nebivolol and sotalol in human serum by liquid–liquid extraction and ultra‐high‐performance liquid chromatography coupled with ultra‐high‐resolution TOF mass spectrometry. After liquid–liquid extraction, beta blockers were separated on a reverse‐phase analytical column (Acclaim RS 120; 100 × 2.1 mm, 2.2 μm). The total run time was 6 min for each sample. Linearity, limit of detection, limit of quantification, matrix effects, specificity, precision, accuracy, recovery and sample stability were evaluated. The method was successfully applied to the therapeutic drug monitoring of 108 patients with hypertension. This method was also used for determination of beta blockers in 33 intoxicated patients.  相似文献   

19.
Fast methods for the extraction and analysis of various secondary metabolites from cocoa products were developed and optimized regarding speed and separation efficiency. Extraction by pressurized liquid extraction is automated and the extracts are analyzed by rapid reversed‐phase ultra high‐performance liquid chromatography and normal‐phase high‐performance liquid chromatography methods. After extraction, no further sample treatment is required before chromatographic analysis. The analytes comprise monomeric and oligomeric flavanols, flavonols, methylxanthins, N‐phenylpropenoyl amino acids, and phenolic acids. Polyphenols and N‐phenylpropenoyl amino acids are separated in a single run of 33 min, procyanidins are analyzed by normal‐phase high‐performance liquid chromatography within 16 min, and methylxanthins require only 6 min total run time. A fourth method is suitable for phenolic acids, but only protocatechuic acid was found in relevant quantities. The optimized methods were validated and applied to 27 dark chocolates, one milk chocolate, two cocoa powders and two food supplements based on cocoa extract.  相似文献   

20.
Pesticides, widely applied in agriculture, can produce a variety of transformation products and their continuous use causes deleterious effects to ecosystem. Efficient and sensitive analytical techniques for enrichment and analysis of pesticides samples are highly required. Compared with other extraction methods, solid‐phase micro extraction is a solvent free, cost effective, robust, versatile, and high throughput sample preparation technique, especially for the analysis of pesticides from complicated matrices. Coupling of solid‐phase micro extraction with gas chromatography and mass spectrometry and liquid chromatography–mass spectrometry has been extensively applied in pesticide analysis. On the other hand, in recent years, combination of fast separation using solid‐phase micro extraction and rapid detection using ambient mass spectrometry is providing highly efficient pesticide screening. This article summarizes the applications of solid‐phase micro extraction coupled to mass spectrometry for pesticides analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号