首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of dendritic ionic liquids (DILs) based on imidazolium‐modified poly(aryl ether) dendrimers IL‐Br‐Gn (n=0–3) were synthesized by a modified convergent approach and “click” chemistry. The resulting DILs exhibited high thermal resistance with decomposition temperatures up to 270 °C and low glass transition temperatures in the range of approximately ?5–0 °C. All IL‐Br‐Gn were found to be miscible with water at any ratio and could encapsulate hydrophobic molecules. The reversible phase transfer of the DILs between the aqueous and organic phases was accomplished by simple anion exchange between the hydrophilic Br? anion and the hydrophobic bis(trifluoromethylsulfonyl)amide anion (NTf2?). IL‐Br‐Gn could be used as transporters to shuttle hydrophobic molecules between the organic and aqueous phases efficiently. The present work provides a new kind of transporting materials with potential applications in substance separation, drug delivery, and biomolecule transport.  相似文献   

2.
New salts based on imidazolium, pyrrolidinium, phosphonium, guanidinium, and ammonium cations together with the 5‐cyanotetrazolide anion [C2N5]? are reported. Depending on the nature of cation–anion interactions, characterized by XRD, the ionic liquids (ILs) have a low viscosity and are liquid at room temperature or have higher melting temperatures. Thermogravimetric analysis, cyclic voltammetry, viscosimetry, and impedance spectroscopy display a thermal stability up to 230 °C, an electrochemical window of 4.5 V, a viscosity of 25 mPa s at 20 °C, and an ionic conductivity of 5.4 mS cm?1 at 20 °C for the IL 1‐butyl‐1‐methylpyrrolidinium 5‐cyanotetrazolide [BMPyr][C2N5]. On the basis of these results, the synthesized compounds are promising electrolytes for lithium‐ion batteries.  相似文献   

3.
We have reported for the first time the preparation of yolk–shell‐structured Li4Ti5O12 powders for use as anode materials in lithium‐ion batteries. One Li4Ti5O12 yolk–shell‐particle powder is directly formed from each droplet containing lithium, titanium, and carbon components inside the hot wall reactor maintained at 900 °C. The precursor Li4Ti5O12 yolk–shell‐particle powders, which are directly prepared by spray pyrolysis, have initial discharge and charge capacities of 155 and 122 mA h g?1, respectively, at a current density of 175 mA g?1. Post‐treatment of the yolk–shell‐particle powders at temperatures of 700 and 800 °C improves the initial discharge and charge capacities. The initial discharge capacities of the Li4Ti5O12 powders with a yolk–shell structure and a dense structure post‐treated at 800 °C are 189 and 168 mA h g?1, respectively. After 100 cycles, the corresponding capacities are 172 and 152 mA h g?1, respectively (retentions of 91 and 90 %).  相似文献   

4.
A continuous flow reactor was operated at 420 °C and feed rate of 0–1.5 kg h−1 for catalytic degradation of polyethylene (PE) over SA-1 silica–alumina in order to investigate the effect of catalyst on the reaction rate and the quantity and quality of degradation products. SA-1 was either mixed with the PE inside reactor or placed in a catalyst cage, the efficiency being slightly higher in the first case. The catalyst did not have a significant effect on the reaction rates but the volatile products clearly had lower molecular weights. More gases were produced on SA-1 compared to thermal degradation, containing higher amounts of C4 and less amounts of C2 compounds.  相似文献   

5.
The phosphorus-containing ionic liquids (IL) decompose where ion pairs fall apart. Trihexyl(tetradecyl)phosphonium decanoate, sold as Cyphos IL 103, and Trihexyltetradecylphosphonium bis[(trifluoromethyl)sulfonyl] amide, sold as Cyphos IL 109, decompose in 200–475 °C range in air and the fragments containing organophosphorus are found here among other major fragments of hydrocarbon arms. Black residues are found after heating in air to 740 °C in TG in 5.0 and 0.6 mass/% for Cyphos IL 103 and 109, respectively. They were presumably containing P2O5 after oxidation. Not all the phosphorus can be counted for at 740 °C and falls short of calculated values of 10.9 and 9.3 mass/%, if residues contain nothing else but P2O5. Among the fragments the authors found in MS the organophosphorus fragments from decomposition of the cationic C32 H68 P + including P with 3–4 hydrocarbon attached as well as the major fragments of linear hydrocarbon arms. Water evolves early at lower temperature and continues to 740 °C. CO2 comes from oxidation of carbon at high temperatures. The SO, SO2, CF3, CF2CF2 evolve in sulfur and fluorine containing anion in Cyphos IL 109. H3PO4 is detected, which is most likely from the reaction product of P2O5 and water. No P2O5 was found. Ash content examined by inductively coupled plasma spectroscopy (ICP) found that the phosphorus P in the ashes after burning in air to 700 °C and found 3200 ppm (or 0.62 mass/%) and 30 ppm (0.003 mass/%) in Cyphos IL 103 and 109, respectively.  相似文献   

6.
Samples of a precursor for an aluminum oxide ceramics reinforced with zirconium oxide were synthesized by hydrolysis of various aluminum salts in the presence of a ZrO2 sol under conditions of urea decomposition at 90°C and pH < 4 maintained, with hydrolysis products deposited onto the surface of ZrO2 sol particles. It was found that the nature of a salt anion affects the interaction of hydrolysis products of the aluminum cation with the surface of ZrO2 sol particles. The structure of products formed in thermal treatment of samples of a precursor for Al2O3-ZrO2 (T = 1250°C) was characterized by X-ray phase analysis and scanning electron microscopy. The phase transition temperatures of the oxides Al2O3 and ZrO2 contained in the precursor were estimated using the results of thermal analysis of the samples in the temperature range 20–1300°C.  相似文献   

7.
The title compounds, bis­(ammonium) naphthalene‐1,5‐di­sul­fon­ate, 2NH4+·C10H6O6S22−, and bis­[1‐(hydroxy­methyl)‐3,5,7‐tri­aza‐1‐azoniatri­cyclo­[3.3.1.13,7]­decane] 1,5‐naphthalene­di­sul­fon­ate, 2C7H15N4O+·C10H6O6S22−, were prepared from the acid‐promoted reaction of hexa­methyl­enetetr­amine. In both structures, the di­sulfonate anion is positioned on an inversion center, with each sulfonate group contributing to the supramolecular assemblies via hydrogen bonds. The ammonium cations are linked to sulfonate groups by four distinct N+—H⃛O—S contacts [N⃛O = 2.846 (2)–2.898 (2) Å and N—H⃛O = 160 (2)–175 (2)°], whereas the 1‐(hydroxy­methyl)‐3,5,7‐tri­aza‐1‐azoniatri­cyclo­[3.3.1.13,7]­decane cations form one O—H⃛O—S [O⃛O = 2.628 (2) Å and O—H⃛O = 176°] and three C—H⃛O—S [C⃛O = 3.359 (2)–3.380 (2) Å and C—H⃛O = 148–155°] interactions to neighboring sulfonate groups.  相似文献   

8.
In the title salt, C14H18N22+·2C9H5N4O, the 1,1′‐diethyl‐4,4′‐bipyridine‐1,1′‐diium dication lies across a centre of inversion in the space group P21/c. In the 1,1,3,3‐tetracyano‐2‐ethoxypropenide anion, the two independent –C(CN)2 units are rotated, in conrotatory fashion, out of the plane of the central propenide unit, making dihedral angles with the central unit of 16.0 (2) and 23.0 (2)°. The ionic components are linked by C—H...N hydrogen bonds to form a complex sheet structure, within which each cation acts as a sixfold donor of hydrogen bonds and each anion acts as a threefold acceptor of hydrogen bonds.  相似文献   

9.
The catalytic decomposition of dichlorodifluoromethane (CFC‐12) in the presence of water vapor on a series of SO42?‐promoted solid adds was investigated. CFC‐12 was decomposed completely on SO42?/ZrO2, SO42?/TiO2, SO42?/SnO2, SO42?/ Fe2O3 and SO42–/Al2O3 at 265°C, 270°C, 325°C, 350°C and 325°C, respectively, and the selectivity to by‐products was neglectable. Obvious deactivation was found on SO42?/ZrO2 and SO42?/Al2O3, during several hours on stream, while the catalytic activity was maintained on SO42?/TiO2, SO42?/SnO2 and SO42?/Fe2O3 for 240 h on stream.  相似文献   

10.
We report a thermoresponsive poly(N‐isopropylacrylamide) (PNIPAM) brush functionalized Janus Au–Pt bimetallic micromotor capable of modulating the direction of motion with the change of the ambient temperature. The PNIPAM@Au–Pt micromotor moved along the Au–Pt direction with a speed of 8.5 μm s?1 in 1.5 % H2O2 at 25 °C (below the lower critical solution temperature (LCST) of PNIPAM), whereas it changed the direction of motion (i.e., along the Pt–Au direction) and the speed decreased to 2.3 μm s?1 at 35 °C (above LCST). Below LCST, PNIPAM brushes grafted on the Au side were hydrophilic and swelled, which permitted the electron transfer and proton diffusion on the Au side, and thus the motion is regarded as a self‐electrophoretic mechanism. However, PNIPAM brushes above LCST became hydrophobic and collapsed, and thus the driving mechanism switched to the self‐diffusiophoresis like that of Pt‐modified Janus silica motors. These motors could reversibly change the direction of motion with the transition of the hydrophobic and hydrophilic states of the grafted PNIPAM brushes. Such a thermoresponsive polymer brush functionalization method provides a new strategy for engineering the kinematic behavior of phoretically driven micro/nanomotors.  相似文献   

11.
The addition of reactive carbanions to (η4‐1,3‐diene)Fe(CO)3 complexes at ?78 °C and 25 °C produced putative homoallyl and allyl anion complexes, respectively. Reaction of the reactive intermediates with 2‐(phenylsulfonyl)‐3‐phenyloxaziridine afforded nucleophilic substituted (η4‐1,3‐diene)Fe(CO)3 complexes.  相似文献   

12.
A new class of isomers, namely, intercage electron‐transfer isomers, is reported for fluorinated double‐cage molecular anion e?@C20F18(NH)2C20F18 with C20F18 cages: 1 with the excess electron inside the left cage, 2 with the excess electron inside both cages, and 3 with the excess electron inside the right cage. Interestingly, the C20F18 cages may be considered as two redox sites existing in a rare nonmetal mixed‐valent (0 and ?1) molecular anion. The three isomers with two redox sites may be the founding members of a new class of mixed‐valent compounds, namely, nonmetal Robin–Day Class II with localized redox centers for 1 and 3 , and Class III with delocalized redox centers for 2 . Two intercage electron‐transfers pathways involving transfer of one or half an excess electron from one cage to the other are found: 1) Manipulating the external electric field (?0.001 a.u. for 1 → 3 and ?0.0005 a.u. for 1 → 2 ) and 2) Exciting the transition from ground to first excited state and subsequent radiationless transition from the excited state to another ground state for 1 and 3 . For the exhibited microscopic electron‐transfer process 1 → 3 , 2 may be the transition state, and the electron‐transfer barrier of 6.021 kcal mol?1 is close to the electric field work of 8.04 kcal mol?1.  相似文献   

13.
In this study, we present a versatile and easy procedure for modifying a cobalt ferrite nanoparticle step by step. A new nanocatalyst was prepared via CuII immobilized onto CoFe2O4@HT@Imine. The catalyst was fully characterized by Fourier‐transform infrared (FT‐IR), energy‐dispersive X‐ray spectroscopy (EDX), field emission scanning electron microscopy (FE‐SEM), X‐ray diffraction (XRD), and vibrating sample magnetometer (VSM) analyses. The current procedure as a green protocol offers benefits including a simple operational method, an excellent yield of products, mild reaction conditions, minimum chemical wastes, and short reaction times. Without any significant reduction in the catalytic performance, up to five recyclability cycles of the catalyst were obtained. The optimization results suggest that the best condition in the oxidation of benzyl alcohol derivatives is 0.003 g of the CoFe2O4@HT@Imine‐CuII catalyst, TEMPO, at 70°C under solvent‐free condition and air.  相似文献   

14.
The synthesis, structure, and physical properties of ionic liquids (IL) bearing the novel [Al(O–C6H4–CN)4] ion as counterion to the commonly used [NR4]+, [PR4]+ and imidazolium ions are reported. Both the influence of the alkyl chain length as well as the functionalization with cyano groups is studied. These ILs are easily obtained by reaction of Ag[Al(O–C6H4–CN)4] with the corresponding ammonium, phosphonium, and imidazolium halides. The stability towards electrophilic cations was investigated. All prepared salts have a window for the liquid phase of ca. 200 °C and are thermally stable up to 450 °C. The solid‐state structures reveal only weak cation ··· anion and anion ··· anion interactions in accord with the observed low melting points (glass transition points).  相似文献   

15.
The thiomethyl anion (1) has been generated by fluorodesilylation of trimethylsilylmethanethiol in a variable-temperature flowing afterglow device. The proton affinity (1649 ± 12 kJ mol?1) and electron affinity (0.67 ± .13 eV) were determined and compared to a previously reported molecular orbital calculation. Isomerization via a 1,2-proton shift does not take place between ?40° and 100°C despite a 156 kJ mol?1 driving force. Ion-molecule reactions of 1 were examined with a number of reagents including N20, O2, CS2, COS, and CO2, Hydride ion transfer was observed in every case, along with other products, and thermodynamic information has been derived.  相似文献   

16.
The present study deals with preparation and characterization of spinel mixed oxide systems NiM 2 III O4, where MIII?=?FeIII, CrIII. In order to obtain 50% NiFe2O4/50% SiO2 and 50% NiCr2O4/50% SiO2 nanocomposite, we have used a versatile route based on the thermal decomposition inside the SiO2 matrix, of some particular precursors, coordination compounds of the involved MII and MIII cations with dicarboxylate ligands. The ligands form in the redox reaction between metal nitrates mixture and 1,3-propanediol at the heating around 140?°C of the gels (tetraethylorthosilicate?Cmetal nitrates?C1,3-propanediol?Cwater). The as-obtained precursors, embedded in silica gels, have been characterized by FT-IR spectrometry and thermal analysis. Both precursors thermally decompose up to 350?°C leading to the formation of the corresponding metal oxides inside the silica matrix. X-ray diffraction of the annealed powders have evidenced the formation of NiFe2O4 starting with 600?°C, and NiCr2O4 starting with 400?°C. This behavior can be explained by the fact that, by thermal decomposition of the Fe(III) carboxylate at 300?°C, the spinelic phase ??-Fe2O3 is formed, which interacts with the NiO, forming the ferrite nuclei. By thermal decomposition of chromium carboxylate, a nonstoichiometric chromium oxide (Cr2O3+x ) is formed. In the range 380?C400?°C, Cr2O3+x turns into Cr2O3 which immediately interacts with NiO leading to the formation of nickel chromites nuclei inside the pores of silica matrix. Both spinels have been obtained as nanocrystalites homogenously dispersed as resulted from XRD and TEM data.  相似文献   

17.
The possible encapsulation of the interstellar abundant H3+ ion inside a C60 fullerene cage has been examined by using the Hartree‐Fock (HF) and the second order Møller‐Plesset perturbation (MP2) methods both with the 6‐31G** basis set. It was found that H3+ forms various stable endohedral complexes inside the cage. Six configurations have been examined among which four were stable compared with the separated initial species, the dissociated H2 + H+ inside the cage being the most stable. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

18.
Li+‐conducting oxides are considered better ceramic fillers than Li+‐insulating oxides for improving Li+ conductivity in composite polymer electrolytes owing to their ability to conduct Li+ through the ceramic oxide as well as across the oxide/polymer interface. Here we use two Li+‐insulating oxides (fluorite Gd0.1Ce0.9O1.95 and perovskite La0.8Sr0.2Ga0.8Mg0.2O2.55) with a high concentration of oxygen vacancies to demonstrate two oxide/poly(ethylene oxide) (PEO)‐based polymer composite electrolytes, each with a Li+ conductivity above 10?4 S cm?1 at 30 °C. Li solid‐state NMR results show an increase in Li+ ions (>10 %) occupying the more mobile A2 environment in the composite electrolytes. This increase in A2‐site occupancy originates from the strong interaction between the O2? of Li‐salt anion and the surface oxygen vacancies of each oxide and contributes to the more facile Li+ transport. All‐solid‐state Li‐metal cells with these composite electrolytes demonstrate a small interfacial resistance with good cycling performance at 35 °C.  相似文献   

19.
The rate coefficient for the reaction of the peroxypropionyl radical (C2H5C(O)O2) with NO was measured with a laminar flow reactor over the temperature range 226–406 K. The C2H5C(O)O2 reactant was monitored with chemical ionization mass spectrometry. The measured rate coefficients are k(T) = (6.7 ± 1.7) × 10−12 exp{(340 ± 80)/T} cm3 molecule−1 s−1 and k(298 K) = (2.1 ± 0.2) × 10−11 cm3 molecule−1 s−1. Our results are comparable to recommended rate coefficients for the analogous CH3C(O)O2 + NO reaction. Heterogeneous effects, pressure dependence, and concentration gradients inside the flow reactor are examined. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet: 31: 221–228, 1999  相似文献   

20.
In the crystal structure of the title hydrated salt, poly[(μ2‐aqua)(μ4‐1‐sulfido‐β‐D‐glucoside)potassium], [K(C6H11O5S)(H2O)]n or K+·C6H11O5S·H2O, each thioglucoside anion coordinates to four K+ cations through three of its four hydroxy groups, forming a three‐dimensional polymeric structure. The negatively charged thiolate group in each anion does not form an efficient coordination bond with a K+ cation, but forms intermolecular hydrogen bonds with four hydroxy groups, which appears to sustain the polymeric structure. The Cremer–Pople parameters for the thioglucoside ligand (Q = 0.575, θ = 8.233° and ϕ = 353.773°) indicate a slight distortion of the pyranose ring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号