首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cost‐effective carbon‐based catalysts are promising for catalyzing the electrochemical N2 reduction reaction (NRR). However, the activity origin of carbon‐based catalysts towards NRR remains unclear, and regularities and rules for the rational design of carbon‐based NRR electrocatalysts are still lacking. Based on a combination of theoretical calculations and experimental observations, chalcogen/oxygen group element (O, S, Se, Te) doped carbon materials were systematically evaluated as potential NRR catalysts. Heteroatom‐doping‐induced charge accumulation facilitates N2 adsorption on carbon atoms and spin polarization boosts the potential‐determining step of the first protonation to form *NNH. Te‐doped and Se‐doped C catalysts exhibited high intrinsic NRR activity that is superior to most metal‐based catalysts. Establishing the correlation between the electronic structure and NRR performance for carbon‐based materials paves the pathway for their NRR application.  相似文献   

2.
Sulfur and nitrogen co-doped porous carbon (SNDPC) was successfully synthesized using one-step microwave-assisted pyrolysis of ionic liquid. The structure and morphology of the pyrolysis products were characterized by Fourier-transform infrared (FT-IR) spectroscopy, Raman spectroscopy, X-ray diffraction (XRD), electron microscopy, and X-ray photoelectron spectroscopy (XPS). The pyrolysis mechanism of the ionic liquid 1-ethyl-3-methylimidazolium bis((trifluoromethyl)sulfonyl)imide (EMImNTf2) under microwave irradiation was discussed. Microwave irradiation was found to accelerate the pyrolysis of EMImNTf2. The cation of EMImNTf2 works as the precursor of the carbon backbone of the porous carbon, while the anion acts as sulfur source and porosity-directing regulator. The SNDPC was obtained at 320 ℃ and exhibited graphitic structure with numerous surface defects. The atomic percentages of N and S in SNDPC were 12.84% and 1.07%, respectively. The N atoms mainly substitute the C sites in the graphitic carbon matrix, whereas the S atoms mainly bond to the ledges and defects of the carbon matrix.  相似文献   

3.
Single Fe atoms dispersed on hierarchically structured porous carbon (SA‐Fe‐HPC) frameworks are prepared by pyrolysis of unsubstituted phthalocyanine/iron phthalocyanine complexes confined within micropores of the porous carbon support. The single‐atom Fe catalysts have a well‐defined atomic dispersion of Fe atoms coordinated by N ligands on the 3D hierarchically porous carbon support. These SA‐Fe‐HPC catalysts are comparable to the commercial Pt/C electrode even in acidic electrolytes for oxygen reduction reaction (ORR) in terms of the ORR activity (E1/2=0.81 V), but have better long‐term electrochemical stability (7 mV negative shift after 3000 potential cycles) and fuel selectivity. In alkaline media, the SA‐Fe‐HPC catalysts outperform the commercial Pt/C electrode in ORR activity (E1/2=0.89 V), fuel selectivity, and long‐term stability (1 mV negative shift after 3000 potential cycles). Thus, these nSA‐Fe‐HPCs are promising non‐platinum‐group metal ORR catalysts for fuel‐cell technologies.  相似文献   

4.
开发了一种磁性Fe3O4纳米粒子和2-(3,4-二羟苯基)苯并噻唑(DPB)修饰的磁性棒碳糊电极(MBCPE)用于电化学检测肼.首先将DPB自组装在Fe3O4纳米粒子上,然后将此复合物吸附于设计的MBCPE上. MBCPE电极将磁性纳米粒子吸引到电极表面.所得新型电极具有高的导电性和大的有效比表面积,因而对肼的电催化氧化反应有非常大的电流响应.采用伏安法、扫描电镜、电化学阻抗谱、红外光谱和紫外-可见光谱对修饰电极进行了表征.采用伏安法研究了在磷酸盐缓冲溶液(pH=7.0)中MBCPE/Fe3O4NPs/DPB电极上肼的电化学行为.作为电化学传感器, MBCPE/Fe3O4NPs/DPB电极对肼氧化反应表现出极高的电催化活性.在DPB存在下,肼的氧化电势下降,但其催化电流增加.电催化电流与肼浓度在0.1–0.4和0.7–12.0μmol/L二个区间内表现出线性关系,检测限为18.0 nmol/L.另外,研究了MBCPE/Fe3O4NPs/DPB电极同时检测肼和苯酚的性能.伏安实验结果显示,苯酚的线性区域为100–470μmol/L,检测限为24.3μmol/L.采用此电极检测了水样品中的肼和苯酚.  相似文献   

5.
We present a rational and simple methodology to fabricate highly conductive nitrogen-doped ordered mesoporous carbon with a graphitic wall structure by the simple adjustment of the carbonization temperature of mesoporous carbon nitride without the addition of any external nitrogen sources. By simply controlling the heat-treatment temperature, the structural order and intrinsic properties such as surface area, conductivity, and pore volume, and the nitrogen content of ordered graphitic mesoporous carbon can be controlled. Among the materials studied, the sample heat-treated at 1000 °C shows the highest conductivity, which is 32 times higher than that for the samples treated at 800 °C and retains the well-ordered mesoporous structure of the parent mesoporous carbon nitride and a reasonable amount of nitrogen in the graphitic framework. Since these materials exhibit high conductivity with the nitrogen atoms in the graphitic framework, we further demonstrate their use as a support for nanoparticle fabrication without the addition of any external stabilizing or size-controlling agent, as well as the anode electrode catalysts. Highly dispersed platinum nanoparticles with a size similar to that of the pore diameter of the support can be fabricated since the nitrogen atoms and the well-ordered porous structure in the mesoporous graphitic carbon framework act as a stabilizing and size-controlling agent, respectively. Furthermore the Pt-loaded, nitrogen-doped mesoporous graphitic carbon sample with a high conductivity shows much higher anodic electrocatalytic activity than the other materials used in the study.  相似文献   

6.
The objective of this review with 122 references is to provide structure and retention mechanisms of porous graphitic carbon by chromatographic analysis and computational chemical analysis of retention mechanisms. Synthesis methods of porous graphitic carbon are described. Applications for use as matrix for dynamic coating on porous graphitic carbon and direct separation of polar compounds on porous graphitic carbon demonstrated that the physical and chemical stability of graphitic carbons performed in both chromatography and extraction, especially for polar compounds, those are difficult on both silica-based and organic polymer-based packing materials. The disadvantage is difficult desorption of non-polar compounds adsorbed on the surface. The development of 3.5-microm particles improves the separation power of graphitic carbon columns with the high theoretical plate number.  相似文献   

7.
The electrochemical behaviour of hydrazine at a 1‐benzyl‐4‐ferrocenyl‐1H‐[1,2,3]‐triazole‐triazole/carbon nanotube modified glassy carbon electrode has been studied. The modified electrode shows an excellent electrocatalytic activity for the oxidation of hydrazine and accelerates electron transfer rate. The electrocatalytic current increases linearly with hydrazine concentration in the range 0.5–700.0 μm and the detection limit for hydrazine was 33.0 ± 2.0 nm . The diffusion coefficient (D = 2.5 ± 0.1 × 10?5 cm2 s?1) and kinetic parameters such as the electron transfer coefficient, (α = 0.52) and the heterogeneous rate constant (k′ = 5.5 ± 0.1 × 10?3 cm s?1) for hydrazine were determined using electrochemical approaches. Finally, the method was employed for the determination of hydrazine in water samples. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
In this work, we developed an electrochemical method for the detection of hydrazine based on palladium nanoparticle/carbon nanofibers (Pd/CNFs). Pd/CNFs were prepared by electrospinning technique and subsequent thermal treatments. The electrocatalytic behaviors of Pd/CNFs modified glassy carbon electrode (Pd/CNF‐GCE) for hydrazine oxidation were evaluated by cyclic voltammetry (CV), an obvious and well‐defined oxidation peak appeared at ?0.32 V (vs. Ag/AgCl). The mechanism of the oxidation of hydrazine at Pd/CNF‐GCE was also studied, which demonstrated an irreversible diffusion‐controlled electrode process and a four‐electron transfer involved in the overall reaction. Furthermore, the wide linear range, low detection limit, good reproducibility and excellent storage stability were obtained utilizing differential pulse voltammetry (DPV).  相似文献   

9.
A nitrogen‐doped porous carbon monolith was synthesized as a pseudo‐capacitive electrode for use in alkaline supercapacitors. Ammonia‐assisted carbonization was used to dope the surface with nitrogen heteroatoms in a way that replaced carbon atoms but kept the oxygen content constant. Ammonia treatment expanded the micropore size‐distributions and increased the specific surface area from 383 m2 g?1 to 679 m2 g?1. The nitrogen‐containing porous carbon material showed a higher capacitance (246 F g?1) in comparison with the nitrogen‐free one (186 F g?1). Ex situ electrochemical spectroscopy was used to investigate the evolution of the nitrogen‐containing functional groups on the surface of the N‐doped carbon electrodes in a three‐electrode cell. In addition, first‐principles calculations were explored regarding the electronic structures of different nitrogen groups to determine their relative redox potentials. We proposed possible redox reaction pathways based on the calculated redox affinity of different groups and surface analysis, which involved the reversible attachment/detachment of hydroxy groups between pyridone and pyridine. The oxidation of nitrogen atoms in pyridine was also suggested as a possible reaction pathway.  相似文献   

10.
A slow reaction process has been successfully used to synthesize Prussian blue/single‐walled carbon nanotubes (PB/SWNTs) nanocomposites. Electrochemical and surface characterization by cyclic voltammetry (CV), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV‐vis absorption spectroscopy, Fourier transform infrared (FTIR) spectroscopy and X‐ray diffraction (XRD) confirmed the presence of PB nanocrystallites on SWNTs. PB/SWNTs modified glassy carbon electrode (GCE) exhibits efficient electron transfer ability and high electrochemical response towards hydrazine. The fabricated hydrazine sensor showed a wide linear range of 2.0×10?6–6.0×10?3 M with a response time less than 4 s and a detection limit of 0.5 μM. PB/SWNTs modified electrochemical sensors are promising candidates for cost‐effective in the hydrazine assays.  相似文献   

11.
A simple method, based on Monte Carlo integration, is presented to derive pore size and its volume distribution for porous solids having known configuration of solid atoms. Because pores do not have any particular shape, it is important that we define the pore size in an unambiguous manner and the volume associated with each pore size. The void volume that we adopt is the one that is accessible to the center of mass of the probe particle. We test this new method with porous solids having well defined pores such as graphitic slit pores and carbon nanotubes, and then apply it to obtain the pore volume distribution of complex solids such as disordered solids, rectangular pores, defected graphitic pores, metal organic framework and zeolite.  相似文献   

12.
Mesoporous graphitic carbon nanodisks with hierarchical porous structure, facilely fabricated by catalytic carbonization of iron-based coordination polymer nanodisks, exhibit high capacitance even at high scan rates as electrode materials for electrochemical double layer capacitors.  相似文献   

13.
狄正玲  朱靖  戴磊  孟伟  李跃华  何章兴  王岭 《电化学》2019,25(6):781-791
氮掺杂的多孔碳材料可作为氧还原反应的催化剂,本文借助ZIF-67富氮多孔的特殊结构,采用湿式逐步还原法将Ag嵌入ZIF-67孔腔内,然后在Ar中碳化成功地制备了Ag/Co双金属嵌入的氮掺杂的多孔碳复合材料(Ag/Co@NC)作为氧还原反应的催化剂. 为了证明Ag的突出作用,同时在Ar中碳化了ZIF-67制备了Co嵌入的氮掺杂的多孔碳材料(Co@NC). 利用扫描电子显微镜、透射电子显微镜、X射线衍射、X射线光电子能谱以及比表面积分析对材料的显微形貌、物相组成、结构进行分析,采用循环伏安和线性扫描极化曲线对材料的氧还原催化活性和催化稳定性进行研究. 结果表明,Ag的嵌入未改变ZIF-67的晶体结构,但是大大提高了材料的氧还原催化活性. Ag/Co@NC材料的半波电位和起始电位均高于Co@NC材料,且其在1000次循环伏安测试前后的半波电位变化仅为30 mV,显示出很好的催化稳定性和甲醇耐受性,可作为燃料电池和金属-空气电池的阴极催化剂.  相似文献   

14.
用透射电镜、高分辩透射电镜、X射线衍射和拉曼光谱表征了用催化热解法制备的纳米碳管的结构,研究了纳米碳管的电化学嵌脱锂性能.以纳米级铁粉为催化剂热解乙炔气得到的纳米碳管石墨化程度较低,结构中存在褶皱的石墨层、乱层石墨和微孔等缺陷,具有较高的贮锂容量,初始容量为640mAh/g,但循环稳定性较差.而以纳米级氧化铁粉为催化剂热解乙烯得到的纳米碳管结构比较规则,循环稳定性较好,但贮锂容量较低,初始容量为282 mAh/g.讨论了纳米碳管的结构对其温度特性和不同电流密度下的充放电容量的影响.  相似文献   

15.
In this study, ordered macroporous carbon with a three-dimensional (3D) interconnected pore structure and a graphitic pore wall was prepared by chemical vapor deposition (CVD) of benzene using inverse silica opal as the template. Field-emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Raman spectrometry, nitrogen adsorption, and thermogravimetric analysis techniques were used to characterize the carbon samples. The electrochemical properties of the carbon materials as a carbon-based anode for lithium-ion batteries and as a Pt catalyst support for room-temperature methanol electrochemical oxidation were examined. It was observed that the CVD method is a simple route to fabrication of desired carbon nanostructures, affording a carbon with graphitic pore walls and uniform pores. The graphitic nature of the carbon enhances the rate performance and cyclability in lithium-ion batteries. The specific capacity was found to be further improved when SnO(2) nanoparticles were supported on the carbon. The specific activity of Pt catalyst supported on the carbon materials for room-temperature methanol electrochemical oxidation was observed to be higher than that of a commercial Pt catalyst (E-TEK).  相似文献   

16.
Summary Polyunsaturated fatty acids have been analysed as methyl esters by liquid chromatography on porous graphitic carbon and the results compared with those obtained on octadecyl bonded phases. Chromatographic behaviour on octadecyl bonded phases arises principally as a result of hydrophobic interactions with the bonded phase. Because the retention of analytes is greater on porous graphitic carbon than on octadecyl phases, organic mobile phases are required. When the number of double bonds is low (ca 1–3), the behaviour of porous graphitic carbon is similar to that of octadecyl bonded phases, but when this number increases stronger interactions with the flat surface of the graphite appear, resulting in new selectivity. These two ‘reversed-phase’ systems are considered complementary for separation of different fatty acid methyl esters. An additional advantage of porous graphitic carbon is that it enables isolation of hexadecartrienoic and hexadecadienoic acids, which are not available commercially.  相似文献   

17.
Herein, we have demonstrated a preparation of palladium nanoparticles on electroactivated graphite nanosheets modified screen printed carbon electrode (PdNPs‐EGNS/SPCE) by a simple electrochemical method. The well‐prepared electrocatalyst was potentially applied to the high performance electrocatalytic oxidation of hydrazine in neutral medium. The PdNPs‐EGNS novel composite was characterized by scanning electron microscope (SEM) and the average diameter and thickness of PdNPs and EGNS were found to be ~38 nm and 85 nm, respectively. The high performance electrocatalytic determination of hydrazine was performed by the amperometric i‐t method. The fabricated sensor displayed irreversible electrocatalytic oxidation of hydrazine with diffusion‐controlled electrode process. The oxidation of hydrazine at PdNPs‐EGNS/SPCE showed wider linear range 0.05–1415 µM and high sensitivity 4.382 µA µM?1 cm?2. The as‐prepared electrocatalyst achieved quick response towards hydrazine with a lower detection limit 4 nM.  相似文献   

18.
Graphene‐based materials still exhibit poor electrocatalytic activities for the hydrogen evolution reaction (HER) although they are considered to be the most promising electrocatalysts. We fabricated a graphene‐analogous material displaying exceptional activity towards the HER under acidic conditions with an overpotential (57 mV at 10 mA cm?2) and Tafel slope (44.6 mV dec?1) superior to previously reported graphene‐based materials, and even comparable to the state‐of‐the art Pt/C catalyst. X‐ray absorption near‐edge structure (XANES) and solid‐state NMR studies reveal that the distinct feature of its structure is dual graphitic‐N doping in a six‐membered carbon ring. Density functional theory (DFT) calculations show that the unique doped structure is beneficial for the activation of C?H bonds and to make the carbon atom bonded to two graphitic N atoms an active site for the HER.  相似文献   

19.
A carbon paste electrode was modified with 2‐(4‐Oxo‐3‐phenyl‐3,4‐dihydroquinazolinyl)‐N′‐phenyl‐hydrazinecarbothioamide, magnetic core? shell Fe3O4@SiO2/MWCNT nanocomposite and ionic liquid (n‐hexyl‐3‐methylimidazolium hexafluoro phosphate). The electro‐oxidation of hydrazine at the surface of the modified electrode was studied using electrochemical approaches. This modified electrode offers a considerable improvement in voltammetric sensitivity toward hydrazine, compared to the bare electrode. Square wave voltammetry (SWV) exhibits a linear dynamic range from 7.0×10?8 to 5.0×10?4 M and a detection limit of 40.0 nM for hydrazine. The diffusion coefficient and kinetic parameters (such as electron transfer coefficient and the heterogeneous rate constant) for hydrazine oxidation were also determined. The prepared modified electrode exhibits a very good resolution between the voltammetric peaks of hydrazine and phenol that makes it suitable for the detection of hydrazine in the presence of phenol in real samples.  相似文献   

20.
A reduced graphene oxide/platinum(II) tetraphenylporphyrin nanocomposite (RGO/Pt‐TPP)‐modified glassy carbon electrode was developed for the selective detection of hydrazine. The RGO/Pt‐TPP nanocomposite was successfully prepared via noncovalent π–π stacking interaction. The prepared nanocomposite was characterized using nuclear magnetic resonance, electrochemical impedance, ultraviolet–visible and Raman spectroscopies, scanning electron microscopy and X‐ray diffraction. The electrochemical detection of hydrazine was performed via cyclic voltammetry and amperometry. The RGO/Pt‐TPP nanocomposite exhibited good electrocatalytic activity towards detection of hydrazine with low overpotential and high oxidation peak current. The fabricated sensor exhibited a wide linear range from 13 nM to 232 μM and a detection limit of 5 nM. In addition, the fabricated sensor selectively detected hydrazine even in the presence of 500‐fold excess of common interfering ions. The fabricated electrode exhibited good sensitivity, stability, repeatability and reproducibility. In addition, the practical applicability of the sensor was evaluated in various water samples with acceptable recoveries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号