首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Pankaj Kumar 《Electroanalysis》2012,24(10):2005-2012
A new ionophore, i.e. p‐(2‐thiazolazo)calix[4]arene ( I ) has been explored for its selective behavior towards Ni(II) ions. A poly(vinyl chloride) based membrane containing ( I ) as an electroactive material along with sodiumtetraphenylborate (NaTPB), and nitrophenyloctyl ether in the ratio 10 : 100 : 3 : 150 (I:PVC:NaTPB:NPOE) (w/w) was used to fabricate an all solid state nickel(II)‐selective sensor. The developed sensor exhibited a working concentration range of 1.0×10?6–1.0×10?1 M, with a Nernstian slope of 28.9±1.0 mV/decade of activity and a response time of 10–15 s. This sensor shows a detection limit of 9.0×10?7 M. Its potential response remains unaffected of pH in the range 3.0–7.6, and the cell assembly could be used successfully in partially nonaqueous medium (up to 10 % v/v) without any significant change in the slope value or the working concentration range. The sensor worked satisfactorily for about ten weeks and exhibited excellent selectivity over a number of mono‐, bi‐, and tri‐valent cations including alkali, alkaline earth metal, and transition metal ions. It could be used as an indicator electrode for the end point determination in the potentiometric titration of nickel ions against ethylenediaminetetraacetic acid (EDTA) as well as for the determination of nickel ion concentration in real samples.  相似文献   

2.
Fabrication of PVC membrane electrodes incorporating selective neutral carriers for Cd(2+) was reported. The ionophores were designed to have different topologies, donor atoms and lipophilicity by attaching tripodal amine (TPA) units to the lipophilic anthracene (ionophore I) and p-tert-butylcalix[4]arene (ionophores II, III and IV). The synthesized ionophores were incorporated to the plasticized PVC membranes to prepare Cd(II) ion selective electrodes (ISEs). The membrane electrodes were optimized by changing types and amounts of ionic sites and plasticizers. The selectivity of the membranes fabricated from the synthesized ionophores was evaluated, the relationship between structures of ionophores and membrane characteristics were explored. The ionophore IV which composed of two opposites TPA units on the calix[4]arene compartment showed the best selectivity toward Cd(2+). The best membrane electrode was fabricated from ionophore IV (10.2 mmol kg(-1)) with KTpClPB (50.1 mol% related to the ionophore) as an ion exchanger incorporated in the DOS plasticized PVC membrane (1:2; PVC:DOS). The Cd-ISE fabricated from ionophore IV exhibited good properties with a Nernstian response of 29.4±0.6 mV decade(-1) of activity for Cd(2+) ions and a working concentration range of 1.6×10(-6)-1.0×10(-2)M. The sensor has a fast response time of 10s and can be used for at least 1 week without any divergence in potential. The electrode can be used in the pH range of 6.0-9.0. The proposed electrodes using ionophores III and IV were employed as a probe for determining Cd(2+) from the oxidation of CdS QDs solution and the real treatment waste water sample with excellent results.  相似文献   

3.
Pendant groups such as esters, amides, carboxylic acids, etc. have been grafted at thelower rim of call-c[41arene to produce a variety of novel ionophores'. The call-c[4]areneswith different functional groups have showed coordination diversity for alkali metalcanons2. In this paper we described the synthesis of a new calixarene derivative withpodand-armed functional group and the property as ionophore and extractant for cesiumIOn.25, 26, 27, 28-Tetrakis[2-(o-methoxyphenoxy) 3 wassynthesized f…  相似文献   

4.
A strontium Schiff's base complex (SS) can be used as a suitable ionophore to prepare a sulfate-selective PVC-based membrane electrode. The use of oleic acid (OA) and hexadecyltrimethylammonium bromide (HTAB), as additives, and nitrobenzen (NB), dibutyl phthalate (DBP) and benzyl acetate (BA) as solvent mediators, were investigated. The best performance was observed with a membrane composition PVC: NB: SS: HTAB of 30%: 62%: 5%: 3% ratio. The resulting sensor works well over a wide concentration range (1.0 x 10(-2)-1.0 x 10(-6) M) with a Nernstian slope of -29.2 mV per decade of sulfate activity over a pH range 4.0-7.0. The limit of detection of the electrode is 5 x 10(-7) M. The proposed sensor shows excellent discriminating ability toward SO4(2-) ions with regard to many anions. It has a fast response time of about 15 s. The membrane electrode was used to the determination of zinc in zinc sulfate tablets. The sensor was also used as an indicator electrode in the potentiometric titration of SO4(2-) against barium ion.  相似文献   

5.
《Analytical letters》2012,45(12):2138-2149
Hydrogen ion-selective solid contact electrode based on decamethylcyclopentasiloxane (DMCS) as ionophore was fabricated. The membrane solution was prepared by mixing DMCS, polyvinyl chloride (PVC), potassium tetrakis p-chlorophenyl borate (KTpClPB) and various plasticizers. The best performance was obtained with the sensor based on NPOE (o-nitrophenyl octyl ether) and the conducting polymer layer of poly(pyrrole), doped with NaClO4. The electrode exhibited Nernstian-response in the range of pH 1.9–9.8 with a slope of 57.6 ± 0.2 mV per decade and fast response time within 15 s. This electrode showed good selectivity and was successfully used as an indicator electrode in the potentiometric titration.  相似文献   

6.
The preparation of a lead-selective electrode based on 5,11,17,23-tetra-tert-butyl-25,26,27,28-tetrakis-(diphenylphosphinoylmethoxy)calix[4]arene (1) as an ionophore is reported. The plasticized PVC membrane containing 30% PVC, 57% ortho-nitrophenyloctylether (NPOE), 4% sodium tetraphenylborate (NaTPB) and 9% ionophore 1 was directly coated on a graphite electrode. It exhibits a nearly Nernstian slope of 28.0 +/- 0.2 mV decade(-1) over a concentration range of 1 x 10(-5) - 1 x 10(-2) mol dm(-3) with a detection limit of 1.4 x 10(-6) mol dm(-3). The response time of the electrode was found to be ca. 17 s. The potential of the sensor was independent of the pH variation in the range 3.5 - 5.0. The selectivity of the electrode performance towards lead ions over Th4+, La3+, Sm3+, Dy3+, Y3+, Ca2+, Sr2+, Cd2+, Mn2+, Zn2+, Ni2+, Co2+, NH4+ Ag+, Li+, Na+ and K+ ions was investigated. The prepared electrode was used successfully as an indicator electrode for a potentiometric titration of a lead solution using a standard solution of EDTA. The applicability of the sensor for Pb2+ measurements in various synthetic water samples spiked with lead nitrate was also checked.  相似文献   

7.
In this research,a new poly(vinyl chloride)(PVC) membrane sensor for Ho3+ ion based on N-phenyl-2-(thiophen-2- ylmethylene)hydrazinecarbothioamide(PHC) as an ionophore was prepared.This sensor demonstrated good selectivity and sensitivity towards the holmium ion in comparison with variety of cations,including alkali,alkaline earth,transition and heavy metal ions.The effect of membrane composition and pH on the response properties of the electrode was investigated.In detail,the suggested sensor exhibited a Nernstian behavior(with a slope of 20.4±0.3 mV decade-1) in the range of 1.0×10-6 to 1.0×10-2 mol/L with a detection limit of 6.2×10-7 mol/L.The response time was relatively quick in the whole concentration range(~5 s).The sensor usage was found to be at least 10 weeks in a pH range of 3.3-10.9.It was successfully applied in determination of fluoride ions in mouth wash preparations.  相似文献   

8.
A new solid contact Zn2+ polyvinylchloride membrane sensor with 2-(2-Hydroxy-1-naphthylazo)-1,3,4 -thiadiazole as an ionophore has been prepared. For the electrode construction, ionic liquids, alkylmethylimidazolium chlorides are used as transducer media and as a lipophilic ionic membrane component. The addition of ionic liquid to the membrane phase was found to reduce membrane resistance and determine the potential of an internal reference Ag/AgCl electrode. The electrode with the membrane composition: ionophore: PVC: o-NPOE: ionic liquid in the percentage ratio of (wt.) 1:30:66:3, respectively, exhibited the best performance, having a slope of 29.8 mV decade?1 in the concentration range 3×10?7–1×10?1 M. The detection limit is 6.9×10?8 M. It has a fast response time of 5–7 s and exhibits stable and reproducible potential. It has a fast response time of 5–7 s and exhibits stable and reproducible potential, which does not depend on pH in the range 3.8–8.0. The proposed sensor shows a good and satisfactory selectivity towards Zn2+ ion in comparison with other cations including alkali, alkaline earth, transition and heavy metal ions. It was successfully applied for direct determination of zinc ions in tap water and as an indicator electrode in potentiometric titration of Zn2+ ions with EDTA.   相似文献   

9.
A new chromium(III) PVC membrane sensor incorporating ptertiary‐butyl calix[4]arene as ionophore, potassium tetrakis as additive and dibutyl phthalate (DBP) as plasticizer was constructed. The electrode exhibited an excellent potentiometric response over a wide concentration range of 1.0×10?7–1.0×10?1 M with a Nernstian slope of 20±0.5 mV per decade. The detection limit was 5.0×10?8 M. The electrode showed a better performance over a pH range of 3.0–8.0, and had a short response time of about <15 s.The electrode was successfully applied to potentiometric titration of Cr (III) with EDTA and for direct determination of chromium(III) in waste water.  相似文献   

10.
Three novel neostigmine bromide (NEO) selective electrodes were investigated with 2-nitrophenyl octyl ether as a plasticiser in a polymeric matrix of polyvinyl chloride (PVC). Sensor 1 was fabricated using tetrakis(4-chlorophenyl)borate (TpClPB) as an anionic exchanger without incorporation of an ionophore. Sensor 2 used 2-hydroxy propyl β-cyclodextrin as an ionophore while sensor 3 was constructed using 4-sulfocalix-8-arene as an ionophore. Linear responses of NEO within the concentration ranges of 10−5 to 10−2, 10−6 to 10−2 and 10−7 to 10−2 mol L−1 were obtained using sensors 1, 2 and 3, respectively. Nernstian slopes of 51.6 ± 0.8, 52.9 ± 0.6 and 58.6 ± 0.4 mV/decade over the pH range of 4-9 were observed. The selectivity coefficients of the developed sensors indicated excellent selectivity for NEO. The utility of 2-hydroxy propyl β-cyclodextrin and 4-sulfocalix[8]arene as ionophores had a significant influence on increasing the membrane sensitivity and selectivity of sensors 2 and 3 compared to sensor 1. The proposed sensors displayed useful analytical characteristics for the determination of NEO in bulk powder, different pharmaceutical formulations, and biological fluids (plasma and cerebrospinal fluid (CSF)) and in the presence of its degradation product (3-hydroxyphenyltrimethyl ammonium bromide) and thus could be used for stability-indicating methods.  相似文献   

11.
A PVC membrane electrode for Hg(II) ions, based on a new cone shaped calix[4]arene (L) as a suitable ionophore was constructed. The sensor exhibits a linear dynamic in the range of 1.0 × 10?6–1.0 × 10?1 M, with a Nernstian slope of 29.4 ± 0.4 mV decade?1, and a detection limit of 4.0 × 10?7 M. The response time is quick (less than 10 s), it can be used in the pH range of 1.5–4, and the electrode response and selectivity remained almost unchanged for about 2 months. The sensor revealed comparatively good selectivity with respect to most alkali, alkaline earth, and some transition and heavy metal ions. It was successfully employed as an indicator electrode in the potentiometric titration of Hg2+ ions with potassium iodide, and the direct determination of mercury content of amalgam alloy and water samples.  相似文献   

12.
An optode membrane for cationic surfactants is presented. Plasticized poly(vinyl chloride) (PVC) membranes incorporating the hexaester of calix[6]arene and the neutral H+-selective chromo-ionophore (ETH5294) have proved to be excellent reversible sensing devices for cationic surfactants as exemplified by cetyltrimethylammonium bromide (CTMAB). Based on host–guest chemistry, the guest molecule CTMAB was extracted into the PVC membrane, forming a host–guest adduct with the host molecule calix[6]arene ionophore and causing a concomitant release of a proton from the protonated ETH5294 into the solution. Upon deprotonation, ETH5294 undergoes a color change which can be used as a means for the quantitation of CTMAB. Unlike small inorganic cations, such as K+ and Na+, the experimental results show that the membrane response depends to a great extent on the migration process of CTMAB from the bulk of the solution to the membrane interface. A modified theoretical equation describing the membrane response on the CTMAB concentrations has been derived and shown to be in conformity with the experimental results.  相似文献   

13.
Yang X  Wang K  Xiao D  Guo C  Xu Y 《Talanta》2000,52(6):23-1039
A fluorescent optode membrane for sodium ion that works on the basis of a cation-exchange mechanism has been developed. The plasticized poly(vinyl chloride) (PVC) membrane incorporating sodium-selective ionophore (4-tert-butylcalix[4]arene tetraacetic acid tetraethyl ester), acidic fluorescent pH indicator (5,10,15,20-tetraphenylporphine, TPP) and a lipophilic anionic site (potassium tetrakis(4-chlorophenyl)borate) was used as the sensing device, which exhibits the theoretically expected fluorescent response to sodium ion. The selectivity, response time, reproducibility and lifetime of the optode membrane were discussed.  相似文献   

14.
《Electroanalysis》2002,14(23):1621-1628
Copper phthalocyanine was used as ion carrier for preparing polymeric membrane selective sensor for detection of iodide. The electrode was prepared by incorporating the ionophore into plasticized poly(vinyl chloride) (PVC) membrane, coated on the surface of graphite electrode. This novel electrode shows high selectivity for iodide with respect to many common inorganic and organic anions. The effects of membrane composition, pH and the influence of lipophilic cationic and anionic additives and also nature of plasticizer on the response characteristics of the electrode were investigated. A calibration plot with near‐Nernestian slope for iodide was observed over a wide linear range of five decades of concentration (5×10?6?1×10?1 M). The electrode has a fast response time, and micro‐molar detection limit (ca. 1×10?6 M iodide) and could be used over a wide pH range of 3.0–8.0. Application of the electrode to the potentiometric titration of iodide ion with silver nitrate is reported. This sensor is used for determination of the minute amounts of iodide in lake water samples.  相似文献   

15.
The complex [TpPh,MeNi(Cl)PzPh,MeH] ( I ) [TpPh,Me=hydrotris(3‐phenyl‐5‐methyl‐pyrazol‐1‐yl)borate; PzPh,MeH=3‐phenyl‐5‐methyl‐pyrazole] has been synthesized and explored as ionophore for the preparation of a poly(vinyl chloride) (PVC) membrane sensor for benzoate anions. The formation constants for the interaction of complex I with different organic/inorganic anions in solution have also been studied by sandwich membrane method. PVC based membranes of I using tridodecylmethylammonium chloride (TDDMACl) as cation discriminator and o‐nitrophenyloctyl ether (o‐NPOE), dibutylphthalate (DBP), benzylacetate (BA) and tributylphosphate (TBP) as plasticizing solvent mediators were prepared and investigated as benzoate selective sensors. The best performance was shown by the membrane with composition (w/w) of I (5): PVC (150): NPOE (345): TDDMACl (0.3). The proposed sensor exhibits significantly enhanced selectivity toward benzoate ions over the concentration range 2.2×10?6–1.0×10?1 M with a lower detection limit of 1.4×10?6 M and a Nernstian slope of 59.2 mVdecade?1 of activity within a pH range of 4.5–8.5. The sensor has a response time of 12 s and can be used for at least 8 weeks without any considerable divergence in their potential response. The membrane sensor of complex I have been checked for reversible and accurate sensing of benzoate levels present in liquid food products.  相似文献   

16.
Udenafil is an oral agent for treating male erectile dysfunction. The poly(aniline) solid contact selective electrodes for udenafil have been fabricated from PVC cocktail solutions with three ion selective ion pairs. This solid contact electrode contains three layers of Pt/electro-conductive poly(aniline) polymer/PVC film with an ionophore with a thickness of 2.5 ± 0.1 mm. We compared the slopes of EMF responses and the response range of a solid contact electrode based on Udenafil-TmCIPB ion pair with those based on Udenafil-PMA and Udenafil-TPB ion pairs and showed that the response slopes were influenced by plasticizers. The EMF response slopes of Udenafil-TmCIPB-based solid contact electrodes equalled 58.0 mV/decade (at 20 ± 0.2°C) and their linear response dynamic ranges were 1.0 × 10−2∼1.0 × 10−5.85 M (r 2 = 0.9984). When electrodes with 6 different plasticizers based on Udenafil-TmCIPB were compared, as the dielectric constant of PVC plasticizer increased, so was the response slope at the same time. Having applied the electrodes to artificial serum directly, we could get same satisfactory results [Nernstian slope: 60.3 mV/decade, dynamic range: 1.0 × 10−2∼1.0 × 10−5.78 M (r 2 = 0.9978) in artificial serum]. Solid contact electrodes with Udenafil-TmCIPB have shown the best selectivity, reproducibility of EMF, long-term stability, and short response time (< 20 s).  相似文献   

17.
Mahajan RK  Kumar M  Sharma V  Kaur I 《The Analyst》2001,126(4):505-507
A PVC membrane electrode for silver(I) ion based on Schiff base-p-tert-butylcalix[4]arene is reported. The electrode works well over a wide range of concentration (1.0 x 10(-5)-1.0 x 10(-1) mol dm-3) with a Nernstian slope of 59.7 mV per decade. The electrode shows a fast response time of 20 s and operates in the pH range 1.0-5.6. The sensor can be used for more than 6 months without any divergence in the potential. The selectivity of the electrode was studied and it was found that the electrode exhibits good selectivity for silver ion over some alkali, alkaline earth and transition metal ions. The silver ion-selective electrode was used as an indicator electrode for the potentiometric titration of silver ion in solution using a standard solution of sodium chloride; a sharp potential change occurs at the end-point. The applicability of the sensor to silver(I) ion measurement in water samples spiked with silver nitrate is illustrated.  相似文献   

18.
In this study, all‐solid‐state type potentiometric PVC membrane selective microsensor was developed for Metformin (MET) which is an antidiabetic drug active substance. Metformin‐tetraphenylborate (MET‐TPB) ion‐pair was used as an ionophore in the structure of the sensor membrane. It was determined that the sensor membrane at the ratio of 69 % o‐nitrophenyl octyl ether, 27 % polyvinyl chloride and 4 % MET‐TPB performed the best potentiometric performance. In a wide concentration range (1×10?5–1×10?1 mol/L), the slope, detection limit, response time, pH range, and life‐time of the sensor were determined as 55.9±1.6 mV (R2=0.996), 3.35×10?6 mol/L, 8–10 s, pH: 3–8, and ~10 weeks, respectively. The voltammetric performances of the sensor were also investigated. The prepared microsensor was successfully utilized for the determination of Metformin in a pharmaceutical drug sample by potentiometry and voltammetry. It was observed that the obtained results were in agreement with the results obtained by the UV spectroscopy method at 95 % confidence level.  相似文献   

19.
[5,10,15,20-Tetrakis(4-N,N-dimethylaminobenzene)porphyrinato]Mn(III) acetate (MnTDPAc) was applied as an ionophore for an iodide-selective PVC membrane electrode. The influences of the membrane composition, pH of the test solution and foreign ions on the electrode performance were investigated. The sensor exhibited not only excellent selectivity to iodide ion compared to Cl- and lipophilic anions such as ClO4- and salicylate, but also a Nernstian response with a slope of -59.4 +/- 1.2 mV per decade for iodide ions over a wide concentration range from 1.0 x 10(-2) to 7.5 x 10(-6) M at 25 degrees C. The potentiometric response was independent of the pH of the solution in the pH range of 2 - 8. The electrode could be used for at least 2 months without any considerable divergence in the potential. Good selectivity for iodide ion, a very short response time, simple preparation and relatively long-term stability were the silent characteristics of this electrode. It was successfully used as an indicator electrode in the potentiometric titration of iodide ions, and also in the determination of iodide from seawater samples and drug formulations.  相似文献   

20.
A novel optical sensor has been proposed for sensitive determination of Cu(II) ion in aqueous solutions. The copper sensing membrane was prepared by incorporating Qsal (2-(2-hydroxyphenyl)-3H-anthra[2,1-d]imidazole-6,11-dione) as ionophore in the plasticized PVC membrane containing tributyl phosphate (TBP) as plasticizer. The membrane responds to Cu(II) ion by changing color reversibly from yellow to dark red in acetate buffer solution at pH 4.0. The proposed sensor displays a linear range of 6.3 × 10?7?1.00 × 10?4 M with a limit of detection of 3.3 × 10?7 M. The response time of the optical sensor was about 3?C5 min, depending on the concentration of Cu(II) ions. The selectivity of the optical sensor to Cu(II) ions in acetate buffer is good. The sensor can readily be regenerated by hydrochloric acid (0.1 M). The optical sensor is fully reversible. The proposed optical sensor was applied to the determination of Cu(II) in environmental water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号