首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Bis‐[60]fullerodendrimers were synthesized by assembling [60]fullerene‐containing type I (terminal olefin) and type II (α,β‐unsaturated carbonyl olefin) olefins through the olefin cross‐metathesis reaction. The synthetic modular approach developed in this study allowed the preparation of mono‐[60]fullerodendrimers and their [60]fullerene‐free analogues. First‐ and second‐generation poly(aryl ester) dendrons carrying cyanobiphenyl mesogens were used as liquid‐crystalline promoters. The liquid‐crystalline properties were studied by polarized optical microscopy, differential scanning calorimetry, and small‐angle X‐ray scattering. In agreement with the nature and structure of the dendrimers, nematic, smectic, and multisegregated lamellar phases were observed. Owing to its versatility and tolerance towards many functional groups, olefin cross‐metathesis proved to be a reaction of choice for the elaboration of molecular materials with complex architectures.  相似文献   

2.
    
Two‐dimensional (2D) materials are commonly prepared by exfoliating bulk layered van der Waals crystals. The creation of synthetic 2D materials from bottom‐up methods is an important challenge as their structural flexibility will enable chemists to tune the materials properties. A 2D material was assembled using C60 as a polymerizable monomer. The C60 building blocks are first assembled into a layered solid using a molecular cluster as structure director. The resulting hierarchical crystal is used as a template to polymerize its C60 monolayers, which can be exfoliated down to 2D crystalline nanosheets. Derived from the parent template, the 2D structure is composed of a layer of inorganic cluster, sandwiched between two monolayers of polymerized C60. The nanosheets can be transferred onto solid substrates and depolymerized by heating. Electronic absorption spectroscopy reveals an optical gap of 0.25 eV, narrower than that of the bulk parent crystalline solid.  相似文献   

3.
4.
    
A highly‐ordered 3D covalent fullerene framework is presented with a structure based on octahedrally functionalized fullerene building blocks in which every fullerene is separated from the next by six functional groups and whose mesoporosity is controlled by cooperative self‐assembly with a liquid‐crystalline block copolymer. The new fullerene‐framework material was obtained in the form of supported films by spin coating the synthesis solution directly on glass or silicon substrates, followed by a heat treatment. The fullerene building blocks coassemble with a liquid‐crystalline block copolymer to produce a highly ordered covalent fullerene framework with orthorhombic Fmmm symmetry, accessible 7.5 nm pores, and high surface area, as revealed by gas adsorption, NMR spectroscopy, small‐angle X‐ray scattering (SAXS), and TEM. We also note that the 3D covalent fullerene framework exhibits a dielectric constant significantly lower than that of the nonporous precursor material.  相似文献   

5.
6.
    
What a core-ker! By the appropriate combination of promesogenic bent-core structures and the C(60) unit, lamellar polar liquid-crystal phases were induced. The supramolecular organization of the functional fullerene-based assemblies, the temperature range of the soft phase, the stabilization of the mesophase-like order at room temperature, and the molecular switching under an electric field can be tuned, depending on the molecular structure.  相似文献   

7.
    
Hexaazatrinaphthylene (HATNA) derivatives with six alkylsulfanyl chains of different length (hexyl, octyl, decyl and dodecyl) have been designed to obtain new potential electron-carrier materials. The electron-deficient nature of these compounds has been demonstrated by cyclic voltammetry. Their thermotropic behaviour has been studied by means of differential scanning calorimetry and polarised optical microscopy. The supramolecular organisation of these discotic molecules has been explored by temperature-dependent X-ray diffraction on powders and oriented samples. In addition to various liquid crystalline columnar phases (Col(hd), Col(rd)), an anisotropic plastic crystal phase is demonstrated to exist. The charge-carrier mobilities have been measured with the pulse-radiolysis time-resolved microwave-conductivity technique. They are found to be higher in the crystalline than in the liquid crystalline phases, with maximum values of approximately 0.9 and 0.3 cm(2) V(-1) s(-1), respectively, for the decylsulfanyl derivative. Mobilities strongly depend on the nature of the side chains.  相似文献   

8.
A liquid‐crystalline (LC) phenylterthiophene derivative, which exhibited an ordered smectic phase at room temperature, was purified by vacuum sublimation under a flow of nitrogen. During the sublimation process, thin plates with sizes of 1 mm grew on the surface of the vacuum tube. The crystals exhibited the same X‐ray diffraction patterns as the ordered smectic phase of the LC state that was formed through a conventional recrystallization process by using organic solvents. Because of the removal of chemical impurities, the hole mobility in the ordered smectic phase of the vacuum‐grown thin plates increased to 1.2×10?1 cm2 V?1 s?1 at room temperature, whereas that of the LC precipitates was 7×10?2 cm2 V?1 s?1. The hole mobility in the ordered smectic phase of the vacuum‐sublimated sample was temperature‐independent between 400 and 220 K. The electric‐field dependence of the hole mobility was also very small within this temperature range. The temperature dependence of hole mobility was well‐described by the Hoesterey–Letson model. The hole‐transport characteristics indicate that band‐like conduction affected by the localized states, rather than a charge‐carrier‐hopping mechanism, is a valid mechanism for hole transport in an ordered smectic phase.  相似文献   

9.
Blue‐ and green‐emitting cyclometalated liquid‐crystalline iridium complexes are realized by using a modular strategy based on strongly mesogenic groups attached to an acetylacetonate ancillary ligand. The cyclometalated ligand dictates the photophysical properties of the materials, which are identical to those of the parent complexes. High hole mobilities, up to 0.004 cm2 V?1 s?1, were achieved after thermal annealing, while amorphous materials show hole mobilities of only approximately 10?7–10?6 cm2 V?1 s?1, similar to simple iridium complexes. The design strategy allows the facile preparation of phosphorescent liquid‐crystalline complexes with fine‐tuned photophysical properties.  相似文献   

10.
Bulk heterojunction photovoltaic cells based on composites of copolymer poly [N-90-hepta-decanyl-2,7-carbazole-alt-5,5-(40,70-di-2-thienyl-20,10,30-benzothiadiazole)] and the fullerene derivative [6,6]-phenyl C71-butyric acid methyl ester with an inserted layer of discotic liquid crystalline material (2, 3, 6, 7, 10, 11-hexabutyloxytriphenylene) between the interface of active layer and hole transporting layer has been reported. Different hole transporting layers deposited on indium tin oxide substrates such as poly (3,4-ethylenedioxythiophene)-poly (styrenesulphonate) or molybdenum trioxide has been used in these devices. All the devices with inserted discotic liquid crystal layer showed better performance than the reference cells. Power conversion efficiency of 5.14% was achieved for these photovoltaic solar cells containing self-organised discotic liquid crystal layer of 30 nm thickness under one sun condition which is substantial jump as compared to earlier reports. The mobility of holes in the discotic liquid crystal inserted devices was found to be of the order of 10–6 cm2 V1 s1 due to which high values of current density was achieved. The influence of varying the thickness of liquid crystal layer and annealing on the photovoltaic parameters of these devices was also studied.  相似文献   

11.
Side-chain liquid-crystalline siloxane polymers bearing terthiophene moieties as mesogenic pendant groups have been synthesized. An alkenylterthiophene derivative was treated with poly(hydrogenmethylsiloxane) and poly(dimethylsiloxane-co-hydrogenmethylsiloxane)s in Me(2)SiO/MeHSiO ratios of 1:1 and 7:3, respectively, in the presence of the Karstedt catalyst, to produce pale yellow polymers. The degrees of introduction of the mesogenic unit were 100, 50, and 30%, respectively. The polymers exhibit ordered smectic phases at room temperature. The copolymers with dimethylsiloxane units form smectic phases as a consequence of nanosegregation between the mesogenic units and siloxane backbones with the alkylene spacers. Time-of-flight measurement reveals that the hole mobility exceeds 1×10(-2) cm(2) V(-1) s(-1) in the ordered smectic phase of the copolymer with a degree introduction of the mesogenic units of 50%. This value is comparable to that of the highly ordered mesophases of low-molecular-weight derivatives of phenylnaphthalene and terthiophene. Because of the segregation behavior induced by the flexible backbone, a closer molecular packing structure favorable for fast carrier transport may be formed in the smectic phase of the copolymer in spite of the low density of the mesogenic groups.  相似文献   

12.
Differential scanning calorimetry (DSC) was used to study the binary systems of C60-o-xylene and C70-o-xylene and the ternary system C60-C70-o-xylene. Fullerene C60 formed solvated crystals C60·2C8H10 with incongruent melting point 320 K and with enthalpy of decomposition 31±3 kJ (mol of C60)-1. Two solvated crystals of C70 with incongruent melting points 283 and 369 K, and with decomposition enthalpies 18.5±2.2 and 23.0±1.5 kJ (mol of C70)-1, were formed from o-xylene solutions. Three ternary compositions with C60/C70 mole ratios of 3:1, 1:1 and 1:3 were scanned by DSC. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
本文综述了液晶二聚体、多爪型液晶及香蕉形液晶等几类非常规液晶材料的研究进展。结合笔者近几年的研究积累,着重介绍:(1)液晶二聚体的分子结构与液晶态结构及液晶二聚体所特有的奇偶效应与近晶多形性;(2)多爪型液晶的分子结构与液晶态结构的特点及由于兼有棒状分子与盘状分子的结构特点而具备的特殊的相变性质;(3)香蕉形液晶的分子结构与液晶态结构及香蕉形液晶所特有的手性与极化序。在介绍各类液晶材料的特点及研究热点的同时,围绕分子结构与液晶态结构的关系这一主题,深入讨论了各种液晶材料形成特殊分子排列及表现出特殊物理性质的机理。  相似文献   

14.
15.
Star‐shaped oligophenylenevinylene (OPV) mesogens are shape‐persistent and possess formally large void space. A mesogen with three styrene repeating units packs densely in a columnar helical arrangement. Attachment of one fullerene through a short spacer results in an exceptional increase of the mesophase stability. X‐ray scattering and modeling evidence a triple‐helical arrangement in which the fullerene perfectly fills the void space between the arms of the star mesogen.  相似文献   

16.
17.
18.
采用片晶装饰技术和四氧化钉染色技术相结合在透射电镜下研究了热致性高分子液晶的向错结构,在一种热致性聚芳酯的冻结液晶态中观察到了向错强度分别为S=±1/2和S=±1的两类共六种的向错形态,以及每个向错与其相邻向错之间相互联结和相互作用的状态.  相似文献   

19.
    
Polymerizable hexacatenar mesogens containing a photo-active oligo(p-phenylenevinylene) core were successfully synthesized by replacing the traditional n-alkoxy tails on the molecules with polymerizable hydrocarbon tails containing terminal isoprenyl or 1,3-dienyl units. It was found that for this particular liquid crystal (LC) platform, the incorporation of conventional radical polymerizable groups such as acrylates in the tails was not conducive to the formation of thermotropic LC phases, presumably due to their polar nature. The resulting photoluminescent isoprenyl and 1,3-dienyl hexacatenar monomers were found to form columnar hexagonal phases at elevated temperatures (c. 45–75°C), as determined by powder X-ray diffraction. Unfortunately, photoinitiated radical polymerization studies revealed that the mesogens are susceptible to photodegradation in the LC state at elevated temperatures, resulting in the loss of both LC order and emission properties during photopolymerization. Thermally initiated radical polymerization in the absence of light, however, afforded effective crosslinking with retention of both LC order and the desired emission properties. The resulting crosslinked columnar hexagonal phases were found to exhibit emission maxima at nearly identical wavelengths, with comparable intensities relative to the unpolymerized starting materials. The effect of the different polymerizable groups on the mesogenic behaviour, polymerization characteristics, and emission properties of the hexacatenar compounds is presented.  相似文献   

20.
The synthesis and self-assembly of twelve semifluorinated first-generation dendrons or minidendrons attached to electron-acceptor (n-type) groups generated from various combinations of eight acceptors and three dendrons are reported. Dendrons attached to small electron-acceptor molecules mediate their self-assembly into pi-stacks located in the center of a supramolecular helical pyramidal column with the long axis of the acceptor perpendicular to the long axis of the column. Dendrons attached to large electron-acceptor molecules, such as perylene bisimide, mediate the assembly of their acceptors in an unprecedented arrangement of pi-stacks that have the long axis of the acceptors parallel to the long axis of the supramolecular pyramidal column. All supramolecular columns self-organize into various periodic columnar arrays that exhibit liquid-crystalline phases, crystalline phases, or a liquid-crystalline phase with enhanced intracolumnar order. The present study demonstrates the simplicity and the versatility of the concept of assembly of n-type electroactive groups mediated by semifluorinated dendrons and assesses the scope and limitations of this supramolecular strategy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号