首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using density functional theory (DFT) combined with the first-principles nonequilibrium Green's function (NEGF), we investigated the electron-transport properties and rectifying behaviors of several molecular junctions based on the bis-2-(5-ethynylthienyl)ethyne (BETE) molecule. To examine the roles of different rectification factors, asymmetric electrode-molecule contacts and donor-acceptor substituent groups were introduced into the BETE-based molecular junction. The asymmetric current-voltage characteristics were obtained for the molecular junctions containing asymmetric contacts and donor-acceptor groups. In our models, the computed rectification ratios show that the mode of electrode-molecule contacts plays a crucial role in rectification and that the rectifying effect is not enhanced significantly by introducing the additional donor-acceptor components for the molecular rectifier with asymmetric electrode-molecule contacts. The current-voltage characteristics and rectifying behaviors are discussed in terms of transmission spectra, molecular projected self-consistent Hamiltonian (MPSH) states, and energy levels of MPSH states.  相似文献   

2.
Herein we report a theoretical study of diode-like behavior of negatively charged (e.g., glass or silica) nanopores at different potential scan rates (1-1000 V·s(-1)). Finite element simulations were used to determine current-voltage characteristics of conical nanopores at various electrolyte concentrations. This study demonstrates that significant changes in rectification behavior can be observed at high scan rates because the mass transport of ionic species appears sluggish on the time scale of the voltage scan. In particular, it explains the influence of the potential scan rate on the nanopore rectifying properties in the cases of classical rectification, rectification inversion, and the "transition" rectification domain where the rectification direction in the nanopore could be modulated according to the applied scan rate.  相似文献   

3.
Due to its versatile applications in biotechnology, ion current rectification (ICR), which arises from the asymmetric nature of the ion transport in a nanochannel, has drawn much attention, recently. Here, the ICR behavior of a pH-regulated nanochannel comprising two series connected cylindrical nanochannels of different radii is examined theoretically, focusing on the influences of the radii ratio, the length ratio, the bulk concentration, and the solution pH. The results of numerical simulation reveal that the rectification factor exhibits a local maximum with respect to both the radii ratio and the length ratio. The values of the radii ratio and the length ratio at which the local maximum in the rectification factor occur depend upon the level of the bulk salt concentration. The rectification factor also shows a local maximum as the solution pH varies. Among the factors examined, the solution pH influences the ICR behavior of the nanochannel most significantly.  相似文献   

4.
The "open" and "closed" isomers of the diarylethene molecule that can be converted between each other upon photo-excitation are found to have drastically different current-voltage characteristics when sandwiched between two graphene nanoribbons (GNRs). More importantly, when one GNR is metallic and another one is semiconducting, strong rectification behavior of the "closed" diarylethene isomer with the rectification ratio >10(3) is observed. The surprisingly high rectification ratio originates from the band gap of GNR and the bias-dependent variation of the lowest unoccupied molecular orbital of the diarylethene molecule, the combination of which completely shuts off the current at positive biases. Results presented in this paper may form the basis for a new class of molecular electronic devices.  相似文献   

5.
A tunable ionic diode is presented that is based on biomimetic structure-tailorable nanochannels, with precise ion-transport characteristics from ohmic behavior to bidirectional rectification as well as gating properties. The forward/reverse directions of the ionic diode and the degree of rectification can be well-regulated by combining the patterned surface charge and the sophisticated structure. This system creates an ideal platform for precise transportation of ions and molecules, and potential applications in analytical sciences are anticipated.  相似文献   

6.
We present state-of-the-art first principles calculations for the IV characteristics of a donor-insulator-acceptor (DsigmaA) type molecular diode anchored with thiolate bonds to two gold electrodes. We find very poor diode characteristics of the device, and the origin of this is analyzed in terms of the bias-dependent electronic structure. At zero bias, the highest occupied molecular orbital (HOMO) is confined to the D part, and the lowest unoccupied molecular orbital (LUMO) is confined to the A part, while at 3.8 V the two states align, and this gives rise to an increasing current. The latter is a potential mechanism for rectification and may in some cases lead to favorable diode characteristics. We identify the origin of the vanishing rectification for the investigated molecule, and on the basis of this we suggest parameters which are important for successful chemical engineering of DsigmaA rectifiers.  相似文献   

7.
A tunable ionic diode is presented that is based on biomimetic structure‐tailorable nanochannels, with precise ion‐transport characteristics from ohmic behavior to bidirectional rectification as well as gating properties. The forward/reverse directions of the ionic diode and the degree of rectification can be well‐regulated by combining the patterned surface charge and the sophisticated structure. This system creates an ideal platform for precise transportation of ions and molecules, and potential applications in analytical sciences are anticipated.  相似文献   

8.
Ion transport in biological and synthetic nanochannels is characterized by such phenomena as ion current fluctuations, rectification, and pumping. Recently, it has been shown that the nanofabricated synthetic pores could be considered as analogous to biological channels with respect to their transport characteristics [P. Yu. Apel et al., Nucl. Instrum. Methods Phys. Res. B 184, 337 (2001); Z. Siwy et al., Europhys. Lett. 60, 349 (2002)]. The ion current rectification is analyzed. Ion transport through cylindrical nanopores is described by the Smoluchowski equation. The model is considering the symmetric nanopore with asymmetric charge distribution. In this model, the current rectification in asymmetrically charged nanochannels shows a diodelike shape of I-V characteristic. It is shown that this feature may be induced by the coupling between the degree of asymmetry and the depth of internal electric potential well. The role of concentration gradient is discussed.  相似文献   

9.
刘洪梅  赵健伟 《化学进展》2009,21(6):1154-1163
分子电子器件的思想始于20世纪70年代,分子整流的研究在30多年中取得了显著进展,包括分子结构设计、实验测量以及理论模拟。本文简述了分子整流的发展历程,介绍了被广泛研究的分子整流体系以及分子水平整流机理,包括D-σ-A型、D-π-A型、D-A型、构象转变和界面引起的整流,以及负微分电阻现象。最后提出了分子整流研究中存在的一些问题,并展望了分子整流的研究和发展方向。  相似文献   

10.
Electronic control over the generation, transport, and delivery of ions is useful in order to regulate reactions, functions, and processes in various chemical and biological systems. Different kinds of ion diodes and transistors that exhibit non-linear current versus voltage characteristics have been explored to generate chemical gradients and signals. Bipolar membranes (BMs) exhibit both ion current rectification and water splitting and are thus suitable as ion diodes for the regulation of pH. To date, fast switching ion diodes have been difficult to realize due to accumulation of ions inside the device structure at forward bias--charges that take a long time to deplete at reverse bias. Water splitting occurs at elevated reverse voltage bias and is a feature that renders high ion current rectification impossible. This makes integration of ion diodes in circuits difficult. Here, we report three different designs of micro-fabricated ion bipolar membrane diodes (IBMDs). The first two designs consist of single BM configurations, and are capable of either splitting water or providing high current rectification. In the third design, water-splitting BMs and a highly-rectifying BM are connected in series, thus suppressing accumulation of ions. The resulting IBMD shows less hysteresis, faster off-switching, and also a high ion current rectification ratio as compared to the single BM devices. Further, the IBMD was integrated in a diode-based AND gate, which is capable of controlling delivery of hydroxide ions into a receiving reservoir.  相似文献   

11.
本文成功构筑了金/硅纳米线(Au/SiNWs)阵列自驱动式可见-近红外光探测器.探测器在暗态时表现出良好的二极管整流特性,在±1 V偏压下,整流比达584.在可见-近红外光照下,光探测器具有明显的光生伏特效应.光探测性能研究表明:当无外加偏压时,探测器对波长为405 nm、532 nm和1064 nm的光源具有较高的响应率,并且响应快速、信号稳定,重现性良好;当给器件施加一个很小的正偏压时,通过暗态和照光的切换,探测器可使外电路中的电流快速地正负交替变化,从而实现一种快速、有效的二进制光响应.自驱动式Au/SiNWs阵列光探测器显示了高灵敏、快速、宽光谱响应特性,具有巨大的应用前景.  相似文献   

12.
The electrokinetic ionic-current rectification in a conical nanopore with linearly varying surface-charge distributions is studied theoretically by using a continuum model composed of a coupled system of the Nernst-Planck equations for the ionic-concentration field and the Poisson equation for the electric potential in the electrolyte solution. The numerical analysis includes the electrochemistry inside reservoirs connected to the nanopore, neglected in previous studies, and more precise accounts of the ionic current are provided. The surface-charge distribution, especially near the tip of the nanopore, significantly affects the ionic enrichment and depletion, which, in turn, influence the resulting ionic current and the rectification. It is shown that non-uniform surface-charge distribution can reverse the direction, or sense, of the rectification. Further insights into the ionic-current rectification are provided by discussing the intriguing details of the electric potential and ionic-concentration fields, leading to the rectification. Rationale for future studies on ionic-current rectification, associated with other non-uniform surface-charge distributions and electroosmotic convection for example, is discussed.  相似文献   

13.
The properties of self-assembled molecules may be tuned by sequentially coupling components on a gold surface, the molecular electronics toolbox of chemically reactive building blocks yielding molecular wires with diode-like current-voltage (I-V) characteristics. The bias for rectification in each case is dependent upon the sequence of electron-donating and electron-accepting moieties and similar behaviour has been achieved for four different contacting techniques.  相似文献   

14.
We report the gate-controlled rectification behavior in C(70)@SWNT networks at room temperature in air. The electrical transport characteristics can be fitted well with the conventional Schottky diode model. The origin of the rectifying behavior in fullerene peapod networks device is qualitatively discussed. This paper demonstrates a strategy for diode fabrication based on peapod networks.  相似文献   

15.
Current rectification effect in an asymmetric molecule HCOO-C6H4-(CH2)n sandwiched between two aluminum electrodes has been studied using an ab initio nonequilibrium Green's function method. The conductance of the system decreases exponentially with the increasing number n of CH2. The phenomenon of current rectification is observed such that a very small current appears at negative bias and a sharp negative differential resistance at a critical positive bias when n>or=2. The rectification effect arises from the asymmetric structure of the molecule and the molecule-electrode couplings. A significant rectification ratio of approximately 38 can be achieved when n=5.  相似文献   

16.
As a first example, herein we show that g‐Si4N3 is expected to act as a metal‐free ferromagnet featuring both charge and spin current rectification simultaneously. Such rectification is crucial for envisioning devices that contain both logic and memory functionality on a single chip. The spin coherent quantum‐transport calculations on g‐Si4N3 reveal that the chosen system is a unique molecular spin filter, the current‐voltage characteristics of which is asymmetric in nature, which can create a perfect background for synchronous charge and spin current rectification. To shed light on this highly unusual in‐silico observation, we have meticulously inspected the bias‐dependent modulation of the spin‐polarized eigenstates. The results indicate that, whereas only the localized 2p orbitals of the outer‐ring (OR) Si atoms participate in the transmission process in the positive bias, both OR Si and N atoms contribute in the reverse bias. Furthermore, we have evaluated the spin‐polarized electron‐transfer rate in the tunneling regime, and the results demonstrate that the transfer rates are unequal in the positive and negative bias range, leading to the possible realization of a simultaneous logic–memory device.  相似文献   

17.
We have conducted a theoretical study on the electronic transport behaviour of two molecular diodes connected in series. The single diode is composed of o-nitrotoluene and o-aminotoluene connecting via a σ-bridge, and the tandem diode is two single diodes connecting via a π-bridge. It was found that the rectification ratio was greatly improved due to the electronic coupling in the tandem diode. The rectification ratio of the tandem molecular diode can be 20 times higher than that of the single diode, which is quite different from a traditional diode. In addition, we also found that the high rectification ratio correlates with the intramolecular coupling of the tandem system. When long conjugated wires are employed in two single diodes, the rectification ratio is reduced.  相似文献   

18.
The feasibility of employing azulene-like molecules as a new type of high performance substitution-free molecular rectifier has been explored using NEGF-DFT calculation. The electronic transport behaviors of metal-molecule-metal junctions consisting of various azulene-like dithiol molecules are investigated, which reveals that the azulene-like molecules exhibit high conductance and bias-dependent rectification effects. Among all the substitution-free azulene-like structures, cyclohepta[b]cyclopenta[g]naphthalene exhibits the highest rectification ratio, revealing that the all fused aromatic ring structure and an appropriate separation between the pentagon and heptagon rings are essential for achieving both high conductance and high rectification ratio. The rectification ratio can be increased by substituting the pentagon ring with electron-withdrawing group and/or the heptagon ring with electron donating groups. Further increase of the rectification ratio may also be obtained by lithium adsorption on the pentagon ring. This work reveals that azulene-like molecules may be used as a new class of highly conductive unimolecular rectifiers.  相似文献   

19.
Gold surface modified with a two-component system consisting of poly (acrylic acid) (PAA) by electropolymerizing acrylic acid (AA) and decane thiol (DT), further functionalized with ferrocene monocarboxylic acid (FMC) through covalent linkage, was used to demonstrate mediated electron transfer resulting in a unidirectional flow of current. The electrode surface was modified using two different configurations. In Configuration 1 (Config. 1), electrode surface modified with FMC showed rectification behavior when contacted with a solution containing methylene blue (MB). In Configuration 2, redox-active bilayer was constructed using polyvinyl pyrollidone (PVP) and hexaamineruthernium (II) chloride [Ru(NH3)6]2+ showed rectification characteristics. The continuous rectification property of the redox-active bilayer is achieved by releasing the trapped [Ru(NH3)6]3+ in the outer layer using a reductant (ascorbic acid). Spectroelectrochemical measurements were made to study the reduction property of the ascorbic acid. Atomic force microscopic images and impedance measurements were also made on the modified electrode surfaces to explore the compactness of the first layer (PAA and PAA/DT).  相似文献   

20.
Ionically-assembled structures that comprise discrete layers of cationic acceptors (4,4'-bipyridinium) and anionic donors (copper phthalocyanine-3,4',4',4'-tetrasulfonate) exhibit asymmetric current-voltage (I-V) characteristics with high rectification ratios of 60-100 at +/-1 V.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号