首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
A biosensor system for simultaneous determination of creatinine and urea in blood serum and dialysate samples was developed. It consisted of creatinine and urea biosensors based on a potentiometric transducers with two identical pH‐sensitive field‐effect transistors. In creatinine biosensor, creatinine deiminase immobilized via photopolymerization in PVA/SbQ polymer on one transistor served as a biorecognition element, while bovine serum albumin in PVA/SbQ polymer placed on the second transistor was used for reference. The urea biosensor was created in the same way but recombinant urease was used instead of creatinine deiminase. The linear ranges of creatinine and urea measurement were 0.02–2 mM and 0.5–15 mM, correspondingly, which allowed simultaneous determination of the metabolites. Response time of the biosensor system was 2–3 min; RSD of responses did not exceeded 5 %. The biosensors demonstrated absence of non‐selective response towards components of blood dialysate and serum. Urea and creatinine concentrations were determined in 20 samples of blood dialysate and serum. The results correlated well with traditional methods of analysis. Creatinine and urea biosensors were stable during five months of storage (during this time the responses decreased by about 10 %). The proposed biosensor system can be effectively used for analysis of serum samples and for hemodialysis control.  相似文献   

2.
《Electroanalysis》2006,18(8):748-756
Amperometric biosensors based on the corresponding oxidase enzyme with poly(neutral red) redox mediator have been developed for the determination of glucose and pyruvate. The enzymes have been immobilized on top of poly(neutral red) modified carbon film electrodes with glutaraldehyde as the cross‐linking agent. The biosensors were characterized by cyclic voltammetry and by electrochemical impedance spectroscopy. The glucose biosensor exhibited a linear response in the range 90 μM to 1.8 mM with a detection limit of 22 μM and the pyruvate biosensor in the range 90 to 600 μM with a detection limit of 34 μM. The relative standard deviations were found to be 2.1% (n=3) and 2.8% (n=4) respectively. The interference effects of various compounds were also studied. The glucose content of several types of wine and the amount of pyruvate in onion and garlic were determined and the results were compared with those obtained by standard spectrophotometric methods.  相似文献   

3.
A new H2O2 enzymeless sensor has been fabricated by incorporation of thionin onto multiwall carbon nanotubes (MWCNTs) modified glassy carbon electrode. First 50 μL of acetone solution containing dispersed MWCNTs was pipetted onto the surface of GC electrode, then, after solvent evaporations, the MWCNTs modified GC electrode was immersed into an aqueous solution of thionin (electroless deposition) for a short period of time <5–50 s. The adsorbed thin film of thionin was found to facilitate the reduction of hydrogen peroxide in the absence of peroxidase enzyme. Also the modified electrode shows excellent catalytic activity for oxygen reduction at reduced overpotential. The rotating modified electrode shows excellent analytical performance for amperometric determination of hydrogen peroxide, at reduced overpotentials. Typical calibration at ?0.3 V vs. reference electrode, Ag/AgCl/3 M KCl, shows a detection limit of 0.38 μM, a sensitivity of 11.5 nA/μM and a liner range from 20 μM to 3.0 mM of hydrogen peroxide. The glucose biosensor was fabricated by covering a thin film of sol–gel composite containing glucose oxides on the surface of thionin/MWCNTs modified GC electrode. The biosensor can be used successfully for selective detection of glucose based on the decreasing of cathodic peak current of oxygen. The detection limit, sensitivity and liner calibration rang were 1 μM, 18.3 μA/mM and 10 μM–6.0 mM, respectively. In addition biosensor can reach 90% of steady currents in about 3.0 s and interference effect of the electroactive existing species (ascorbic acid–uric acid and acetaminophen) is eliminated. The usefulness of biosensor for direct glucose quantification in human blood serum matrix is also discussed. This sensor can be used as an amperometric detector for monitoring oxidase based biosensors.  相似文献   

4.
Poly(2-(2,5-di(thiophen-2-yl)-1H-pyrrol-1-yl) (SNS) acetic acid) was electrochemically deposited on graphite electrodes and functionalized with lysine (Lys) amino acid and poly(amidoamine) derivatives (PAMAM?G2 and PAMAM?G4) to investigate their matrix properties for biosensor applications. Glucose oxidase (GOx) was immobilized onto the modified surface as the model enzyme. X-Ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) were used to report the surface properties of the matrices in each step of the biosensor construction. The biosensors were characterized in terms of their operational and storage stabilities and the kinetic parameters (K and I(max)). Three new glucose biosensors revealed good stability, featuring low detection limits (19.0 μM, 3.47 μM and 2.93 μM for lysine-, PAMAM?G2- and PAMAM?G4-functionalized electrodes, respectively) and prolonged the shelf lives (4, 5, and 6 weeks for Lys-, PAMAM?G2- and PAMAM?G4-modified electrodes, respectively). The proposed biosensors were tested for glucose detection on real human blood serum samples.  相似文献   

5.
In this study, we present a fast, simple, low‐cost and disposable method for determination of phenolic content in water samples, using a paper based polyphenol oxidase biosensor. The propylamine functionalized silica nanoparticles was dropped onto a paper sheet. After drying at room temperature, the potato tissue extract including polyphenol oxidase was immobilized on the paper via physical and chemical adsorption. The modified paper was placed on the top of the graphite screen printed electrode. To construct of an electrochemical nanobiosensor, the electrochemical behavior of the modified electrode in different steps was investigated by cyclic voltammetry and electrochemical impedance spectroscopy methods. After being optimized the effective parameters, the changes in the biosensor electrochemical response vs. to the different concentrations of the substrate (phenol solution) were monitored by differential pulse voltammetry and amperometry methods. The linear relationships for phenol detection were obtained in the concentration ranges of 0.01–160 μM and 0.1–300 μM with a detection limit of 0.007 μM and 0.042 μM with DPV and amperometry methods, respectively. This method was successfully used in the voltammetric determination of the phenol content in the real samples, like the river water and the wastewater of wood factory.  相似文献   

6.
Cheng L  Deng S  Lei J  Ju H 《The Analyst》2012,137(1):140-144
A novel disposable solid-state electrochemiluminescent (ECL) biosensor was fabricated by immobilizing glucose oxidase and surface-unpassivated CdTe quantum dots (QDs) on a screen-printed carbon electrode (SPCE). The surface morphology of the biosensor was characterized with scanning electron microscopy and atomic force microscopy. With dissolved O(2) as an endogenous coreactant, QDs/SPCE showed strong ECL emission in pH 9.0 HCl-Tris buffer solution with low ECL peak potential at -0.89 V. The ECL intensity was twice that with hydrogen peroxide as coreactant at the same concentration. This phenomenon meant the ECL decreased upon consumption of dissolved O(2) and thus could be applied to the construction of oxidase-based ECL biosensors. With glucose oxidase as a model enzyme, the biosensor showed rapid response to glucose with a linear range of 0.8 to 100 μM and a detection limit of 0.3 μM. Further detection of glucose contained in human serum samples showed acceptable sensitivity and selectivity. This work provided a promising application of QDs in ECL-based disposable biosensors.  相似文献   

7.
The bioelectrocatalytical properties and kinetic characteristics of new oxidase biosensors based on two different carbosilane dendrimers are described. The best glucose biosensor developed displayed, in an ascorbate interference free work potential interval, a strictly linear range from 0 to 4.0 mM, a detection limit of 40,6 μM and a response time less than 3 s. The lactate biosensor displayed a linear range from 0 to 0.8 mM, a detection limit of 0.73 µM and a response time less than 2 s. The apparent Michaelis–Menten constants were calculated to be 4.39 mM and 2.08 mM respectively, according to Lineweaver–Burk equation.  相似文献   

8.
Electrochemical biosensors for lactate, pyruvate and β-hydroxybutyrate based on oxygen, hydrogen peroxide, and NADH sensors coupled with oxidase and dehydrogenase enzymes were developed and used in conjunction with an artificial pancreas in experiments with extracorporeal circulation. Such procedures allow the fate of these species involved in glucose metabolism to be clarified during insulin treatment of diabetic patients. Studies with a glucose oxidase electrode for in-line determination of glucose produced by hydrolysis of cellobiose in a bioreactor are reported; for the determination of glucose in the presence of high concentrations of cellobiose, the purity of glucose oxidase is important in obtaining linear calibration plots. Impurities like amylase, maltase, invertase, and galactose oxidase, which are usually present in commercial preparations of glucose oxidase, must be absent. Another application is the amperometric determination of lactose, lactate and glucose in milk samples by using a hydrogen peroxide sensor coupled with β-galactosidase, lactate oxidase and glucose oxidase. The procedures outlined are simple and the short response times enable milk to be monitored during processing.  相似文献   

9.
《Analytical letters》2012,45(11):2227-2233
Abstract

In order to determine creatine and creatinine, amperometric diamond paste biosensors were proposed. A bienzymatic biosensor based on creatinase and sarcosine oxidase was used for the assay of creatine and a trienzymatic biosensor based on creatinase, sarcosine oxidase, and creatininase was proposed for the assay of creatinine. The linear concentration ranges are of fmol/L magnitude order, with very low limits of detection. The biosensors proved to be highly reliable for determination of creatine and creatinine as raw materials in pharmaceutical formulations as well as in serum samples.  相似文献   

10.
Electrodeposited cobalt oxide (CoOx) nanomaterials are not only used for immobilization of cholesterol oxidase (ChOx) but also as electron transfer mediator for oxidation of H2O2 generated in the enzymatic reaction. Voltammetry and flow injection analysis (FIA) were used for determination of cholesterol. FIA determination of cholesterol with biosensors yielded a calibration curve with the following characteristics: linear range up to 50 μM, sensitivity of 43.5 nA μM?1 cm?2 and detection limit of 4.2 μM. The apparent Michaelis‐Menten constant and the response time of the biosensor are 0.49 mM and 15 s, respectively. This biosensor also exhibits good stability, reproducibility and long life time.  相似文献   

11.
流动注入式乳酸生物传感器   总被引:2,自引:0,他引:2  
研制了一种测定L-乳酸的生物传感器,将乳酸氧化酶(LOD)通过共价键固定在尼龙钢上制备乳酸氧化酶膜,将制得的酶膜固定在氧电极上构成乳酸生物传感器;将透析膜放在氧化酶膜上产生对L-乳酸扩散高度限制来改变该生物传感器的响应;酶膜机械强度高,在氧电极上反复装卸而不损坏,所构成的乳酸生物传感器的校正曲线的乳酸定量上限达5mmol/L,响应时间小于30s;初步血样测试的结果显示该乳酸生物传感器用于临床血乳酸的测定具有可行性。  相似文献   

12.
The design and characterization of a lactate biosensor and its application to the determination of this analyte in wine and beer are described. The biosensor is developed through the immobilization of lactate oxidase (LOx) using two different strategies including direct adsorption and covalent binding. The characterization of the resulting lactate oxidase monolayers was performed in aqueous phosphate buffer solutions using atomic force microscopy (AFM) and quartz crystal microbalance (QCM) techniques. In presence of lactate and using hydroxymethylferrocene as a redox mediator, biosensors obtained by either direct adsorption or by covalent binding exhibit a clear electrocatalytic activity, and lactate could be determined amperometrically at 300 mV versus SSCE. Results obtained under these conditions give a linear current response versus lactate concentration up to 0.3 mM, with a detection limit of 10 μM of lactate and a sensitivity of 0.77 ± 0.08 μA mM−1. Finally, biosensors were applied to the determination of lactate in wine and beer. The results obtained are in good agreement with those obtained by a well-established enzymatic-spectrophotometric assay kit.  相似文献   

13.
An improved amino oxidase enzyme electrode has been constructed and applied to the determination of the amount of polyamines present in real samples. The electrode is based on the amperometric detection of H2O2 produced in the enzymatic oxidation of polyamines by amino oxidase. Amino oxidase from soybean seedlings, characterized by an extremely high activity for cadaverine and putrescine, was used. The enzyme was immobilized in an agarose matrix in the presence of glutaraldehyde and bovine serum albumin on the surface of a Pt electrode. Cadaverine, in concentrations between 0.5 and 500 μM, can be quantitatively determined by use of the amino oxidase electrode, the linear calibration range being 0.5–10 μM. The lower detection limit was 0.2 μM and the response time was 15 to 60 s. Putrescine showed similar behaviour. The maximum current response for cadaverine was 5.1 μA/cm2, with an apparent Michaelis-Menten constant (Km′) of 0.175 mM. The sensor response was stable for more than 32 hours of continuous operation at room temperature and, in the presence of fish or meat homogenates, no change in the signal-to-noise ratio was observed. The long-term stability, pH and temperature response of the biosensor has also been studied.  相似文献   

14.
A planar multibiosensor for the simultaneous determination of glucose and lactate is developed by combining the Prussian Blue-based electrocatalyst and the protocol for immobilization of glucose oxidase and lactate oxidase enzymes from solutions with a high content of an organic solvent. High sensitivity coefficients (>80 mA M–1 cm–2 for lactate and >20 mA M –1 cm–2 for glucose) are demonstrated by the multibiosensors operating in the flow-injection mode in a thin-layer measuring cell. The linear range of the analyzed concentration is 1–500 μM for lactate and 5–1000 μM for glucose. A multibiosensor can be used repeatedly (the exhibited operational stability is not less than 100 measurements without the need for recalibration), which allows using it for the analysis of diluted blood samples and blood serum. The electrocatalytic system with a multibiosensor demonstrates performance characteristics that are superior to the commercial analyzers.  相似文献   

15.
A lactate biosensor based on lactate oxidase supported onto a hydrotalcite, electrochemically deposited on a platinum surface, was developed for the first time. For the best electrode configuration, a linear response up to 0.8 mM, with a limit of detection of 14 μM and a sensitivity of 91 mA M?1 cm?2, was obtained. The influence of some interferents due to the oxidation of hydrogen peroxide (at +0.35 V vs. SCE) was also studied. By controlling carefully the experimental conditions, the determination of lactate in a commercial serum sample in the presence of interferents was successfully accomplished.  相似文献   

16.
Nitrogen‐doped carbon hollow spheres (NCHS) were designed for the immobilization and biosensing of proteins. Chitosan was first functionalized with glutaraldehyde to form cross‐linked chitosan with free ? CHO groups (GCS). The as‐prepared GCS was used for dispersion of nitrogen‐doped carbon hollow spheres. Using glucose oxidase (GOD) as a model, the NCHS was tested for immobilization of redox proteins and the design of electrochemical biosensors. GOD molecules immobilized in the nanocomposites showed direct electrochemistry with a formal potential of ?0.448 V and well electrochemical performance. The proposed biosensor exhibited a linear response to glucose concentrations ranging from 3.7 µM to 18.0 mM with a detection limit of 1.2 µM and a sensitivity of 11.85 µA mM?1. This biosensor was also applied to detect glucose in human serum samples, accomplishing good recovery in the range of 92–105 %. The nanocomposites provided a good matrix for protein immobilization and biosensor fabrication.  相似文献   

17.
Khan R  Gorski W  Garcia CD 《Electroanalysis》2011,23(10):2357-2363
The amperometric glutamate biosensor based on screen-printed electrodes containing carbon nanotubes (CNT), and its integration in a flow injection analysis system, is described herein. The sensor was fabricated by simply adsorbing enzyme glutamate oxidase (GlutOx) on a commercial substrate containing multi-wall CNT. The resulting device displayed excellent electroanalytical properties toward the determination of L-glutamate in a wide linear range (0.01-10 μM) with low detection limit (10 nM, S/N≥3), fast response time (≤5 s), and good operational and long-term stability. The CNT modified screen-printed electrodes have a potential to be of general interest for designing of electrochemical sensors and biosensors.  相似文献   

18.
A comparison of the analytical characteristics of two tyramine biosensors, based on graphene oxide (GRO) and polyvinylferrocene (PVF) modified screen‐printed carbon electrodes (SPCE), is reported. Diamine oxidase (DAOx) or monoamine oxidase (MAOx) was immobilized onto the PVF/GRO modified SPCE to fabricate the biosensors. Surface characteristics and electrochemical behaviour of the modified SPCEs were investigated by atomic force microscopy (AFM), scanning electron microscopy (SEM), energy dispersive X‐ray spectroscopy (EDX) and cyclic voltammetry (CV). Electrode surface composition and experimental variables such as pH and working potential were optimized in order to ensure a high performance. Under optimum experimental conditions, both DAOx/PVF/GRO/SPCE and MAOx/PVF/GRO/SPCE biosensors exhibited wide linear dynamic ranges for tyramine from 9.9×10?7 to 1.2×10?4 M and from 9.9×10?7 to 1.1×10?4 M, respectively. MAOx/PVF/GRO/SPCE biosensor showed higher sensitivity (11.98 μA mM?1) for tyramine determination than the DAOx/PVF/GRO/SPCE biosensor (7.99 μA mM?1). The substrate specifity of the biosensors to other biogenic amines namely histamine, putrescine, spermine, spermidine, tryptamine, β‐phenylethylamine and cadaverine was also investigated. The developed biosensors were successfully used for tyramine determination in cheese sample.  相似文献   

19.
Amperometric biosensors based on a gold planar electrode and on two types of nanocomposite electrodes consisting of multi-walled carbon nanotubes for the determination of L-malic acid designed for wine-makers were developed. The biosensors designed for wine-makers were constructed by immobilization of L-malate dehydrogenase and diaphorase within chitosan layers on the surface of the electrodes. The coenzyme NAD+ and the electrochemical mediator ferricyanide were present in the measuring solution. The current resulting from re-oxidation of produced ferrocyanide was measured at a working potential of +300 mV against an Ag/AgCl reference electrode. The biosensor based on a gold electrode showed linearity over the range 10–520 μM with a detection limit of 5.41 μM. Calibration curves for biosensors utilizing nanocomposites were obtained both with the linear range of 10 to 610 μM. The detection limits were 1.57 and 1.77 μM, respectively. The biosensors showed satisfactory operational stability (no loss of sensitivity after 30 consecutive measurements) and storage stability (90% of the initial sensitivity after one year of storage at room temperature). The results obtained from measurements of wine samples were in a good correlation with the standard HPLC method. Satisfactory biosensor sensitivity, specificity and stability allowed their successful commercialization.  相似文献   

20.
Dopamine is a biologically active chemical that performs a number of vital functions as a hormone and neurotransmitter. Therefore, the determination of dopamine concentration in the human body is important for biomedical research. The content of dopamine in the blood varies depending on the age of a healthy person and can serve as a prognostic marker of many diseases. The aim of this work was to develop a new enzyme conductometric biosensor for the determination of dopamine in aqueous samples and to study the biosensor's analytical characteristics. The conductometric method of analysis with differential measurement mode was used in the work. Two pairs of gold interdigitated electrodes deposited on a sitall substrate were used as a conductometric transducer. The biorecognition element of the biosensor was based on laccase immobilized by glutaraldehyde cross-linking. The optimal conditions of laccase immobilization were selected. The influence of solution parameters (ionic strength, pH, buffer capacity) on the biosensor work was investigated. The biosensors demonstrated high sensitivity to dopamine (minimum limit of detection −7.8 μM) with the linear range up to 1 mM. The biosensor was highly selective and reusable. The proposed biosensor was tested regarding the possibility of its long-term storage under different conditions. The developed conductometric biosensor was proven to be suitable for measuring dopamine concentration in biological and pharmaceutical samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号