首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 861 毫秒
1.
《Electroanalysis》2017,29(5):1267-1277
Graphite rod (GR) modified with electrochemicaly deposited gold nanoparticles (AuNPs) and adsorbed glucose oxidase (GOx) was used in amperometric glucose biosensor design. Enzymatic formation of polypyrrole (Ppy) on the surface of GOx/AuNPs/GR electrode was applied in order to improve analytical characteristics and stability of developed biosensor. The linear glucose detection range for Ppy/GOx/AuNPs/GR electrode was dependent on the duration of Ppy‐layer formation and the linear interval was extended up to 19.9 mmol L−1 after 21 h lasting synthesis of Ppy. The sensitivity of the developed biosensor was determined as 21.7 μA mM−1 cm−2, the limit of detection – 0.20 mmol L−1. Ppy/GOx/AuNPs/GR electrodes demonstrated advanced good stability (the t 1/2 was 9.8 days), quick detection of glucose (within 5 s) in the wide linear interval. Additionally, formed Ppy layer decreased the influence of electroactive species on the analytical signal. Developed biosensor is suitable for the determination of glucose in human serum samples.  相似文献   

2.
Recently transition metal hexacyanoferrates, analogues of Prussian Blue, have found application in electroanalysis for the detection of biologically relevant species. Our study describes the development of a novel electrode based on nickel hexacyanoferrate (NiHCF) for the sensorial NO determination. A NiHCF layer was deposited on platinum by cyclic voltammetry in a solution of nickel (II) chloride and potassium hexacyanoferrate (III). The electrode was found to be active for NO reduction. The interaction with the radical was studied voltammetrically within the range from 0 V up to +0.4 V vs. Ag/AgCl/1 M KCl. The most appropriate potential for an amperometric detection was determined to be +0.25 V due to the advantageous signal/noise ratio. The sensitivity of the electrodes was found to be 2.0–2.3 A M?1 cm?2. The sensor response of the most important interferents for NO analysis, hydrogen peroxide, ascorbic acid and nitrite, was measured and determined to be sufficiently low.  相似文献   

3.
Prussian blue modified carbon ionic liquid electrodes (PB‐CILEs) were fabricated using chemical and electrochemical procedures. Chemically fabricated PB‐CILE exhibited an excellent sensitivity (0.0866 μA μM?1), low detection limit (0.01 μM) and two linear ranges (0.01–1 and 1–600 μM) toward hydrogen peroxide. Then, glucose oxidase (GOx) was immobilized on the surface of PB‐CILE to fabricate glucose biosensor using three different procedures involving cross linking with glutaraldehyde (GLU) and bovine serum albumin (BSA), entrapment into the Nafion matrix and covering with a sol‐gel layer. Glucose biosensor fabricated using cross linking procedure showed the best sensitivity (0.0019 μA μM?1) and operational stability for glucose.  相似文献   

4.
A mixed‐valence cluster of cobalt(II) hexacyanoferrate and fullerene C60‐enzyme‐based electrochemical glucose sensor was developed. A water insoluble fullerene C60‐glucose oxidase (C60‐GOD) was prepared and applied as an immobilized enzyme on a glassy carbon electrode with cobalt(II) hexacyanoferrate for analysis of glucose. The glucose in 0.1 M KCl/phosphate buffer solution at pH = 6 was measured with an applied electrode potential at 0.0 mV (vs Ag/AgCl reference electrode). The C60‐GOD‐based electrochemical glucose sensor exhibited efficient electro‐catalytic activity toward the liberated hydrogen peroxide and allowed cathodic detection of glucose. The C60‐GOD electrochemical glucose sensor also showed quite good selectivity to glucose with no interference from easily oxidizable biospecies, e.g. uric acid, ascorbic acid, cysteine, tyrosine, acetaminophen and galactose. The current of H2O2 reduced by cobalt(II) hexacyanoferrate was found to be proportional to the concentration of glucose in aqueous solutions. The immobilized C60‐GOD enzyme‐based glucose sensor exhibited a good linear response up to 8 mM glucose with a sensitivity of 5.60 × 102 nA/mM and a quite short response time of 5 sec. The C60‐GOD‐based glucose sensor also showed a good sensitivity with a detection limit of 1.6 × 10‐6 M and a high reproducibility with a relative standard deviation (RSD) of 4.26%. Effects of pH and temperature on the responses of the immobilized C60‐GOD/cobalt(II) hexacyanoferrate‐based electrochemical glucose sensor were also studied and discussed.  相似文献   

5.
《Electroanalysis》2005,17(3):210-222
Presented in this work is the first step towards an enzymeless/mediatorless glucose sensor. We first observed remarkable electrocatalytic oxidation of glucose using combinative ruthenium oxide (RuOx)‐Prussian blue (PB) analogues (designated as mvRuOx‐RuCN, mv: mixed valent) at ca. 1.1 V (vs. Ag/AgCl) in acidic media (pH 2 Na2SO4/H2SO4). Individual RuOx and PB analogs failed to give any such catalytic response. A high ruthenium oxidation state (i.e., oxy/hydroxy‐RuVII, E°≈1.4 V vs. RHE), normally occurring in strong alkaline conditions at RuOx‐based electrodes, was electrogenerated and stabilized (without any conventional disproportionation reaction) in the mvRuOx‐RuCN matrix for glucose catalysis. Detail X‐ray photoelectron spectroscopic studies can fully support the observation. The catalyst was chemically modified onto a disposable screen‐printed carbon electrode and employed for the amperometric detection of glucose via flow injection analysis (FIA). This system has a linear detection range of 0.3–20 mM with a detection limit and sensitivity of 40 μM (S/N=3) and 6.2 μA/(mM cm2), respectively, for glucose. Further steps towards the elimination of interference and the extendibility to neutral pHs were addressed.  相似文献   

6.
A highly selective, fast and stable biosensor for determination of glucose in soluble coffee has been developed. The biosensor electrode consist of a thin film of ferric hexacyanoferrate (Prussian Blue or PB) electrodeposited on the glassy carbon electrode (GCE) (to provide a catalytic surface for the detection of hydrogen peroxide) glucose oxidase immobilized on top of the electrode and a Nafion® polymer layer. The stability of the PB film and the biosensor was evaluated by injecting standard-solution (50 μM H2O2 and 0.5 mM glucose) during 4 h in a flow-injection system with the electrodes polarized at −50 mV versus Ag/AgCl. The system is able to handle about 60 samples per hour and is very stable and suitable for industrial control. Determination of glucose in the range 2.5 and 15% (w/v) in phosphate buffer with precision (r.s.d. < 1.5%) has been achieved and is in agreement with the conventional procedures. Linear calibration in the range of 0.15 and 2.50 mM with detection limits of ca. 0.03 mM has been obtained. The morphology of the enzyme glucose oxidase on the modified electrode has been analyzed by scanning electron microscopy (SEM) measurements.  相似文献   

7.
《Electroanalysis》2018,30(8):1642-1652
A newly developed amperometric glucose biosensor based on graphite rod (GR) working electrode modified with biocomposite consisting of poly (pyrrole‐2‐carboxylic acid) (PCPy) particles and enzyme glucose oxidase (GOx) was investigated. The PCPy particles were synthesized by chemical oxidative polymerization technique using H2O2 as initiator of polymerization reaction and modified covalently with the GOx (PCPy‐GOx) after activation of carboxyl groups located on the particles surface with a mixture of N‐(3‐dimethylaminopropyl)‐N′‐ethylcarbodiimide hydrochloride (EDC) and N‐hydroxysuccinimide (NHS). Then the PCPy‐GOx biocomposite was dispersed in a buffer solution containing a certain amount of bovine serum albumin (BSA). The resulting biocomposite suspension was adsorbed the on GR electrode surface with subsequent solvent airing and chemical cross‐linking of the proteins with glutaraldehyde vapour (GR/PCPy‐GOx). It was determined that the current response of the GR/PCPy‐GOx electrodes to glucose measured at +300 mV vs Cl reference electrode was influenced by the duration of the PCPy particles synthesis, pH of the GOx solution used for the PCPy particles modification and the amount of immobilized PCPy‐GOx biocomposite. An optimal pH of buffer solution for operation of the biosensor was found to be 8.0. Detection limit was determined as 0.039 mmol L−1 according signal to noise ratio (S/N: 3). The proposed glucose biosensor was tested in human serum samples.  相似文献   

8.
In this work, edged plane pyrolytic graphite electrode EPPGE was modified with functionalised single‐walled carbon nanotubes and Prussian blue nanoparticles (PB). The modified electrode was characterised by techniques such as TEM, FTIR, XPS, EDX and cyclic voltammetry. The EPPGE‐SWCNT‐PB platform exhibited enhanced electron transport and catalytic efficiency towards the oxidation of Diethylaminoethanethiol (DEAET) and hydrazine compared with the other electrodes studied. The EPPGE‐SWCNT‐PB showed good electrochemical stability in the analytical solution, showing limit of detection in the micromolar range and catalytic rate constant of 3.71×106 and 7.56×106 cm3 mol?1 s?1 for DEAET and hydrazine respectively. The adsorption properties of these analytes that impact on their detection at the SWCNT‐PB film modified electrode were evaluated and discussed.  相似文献   

9.
An exploration of gold nanoparticles–bacterial cellulose nanofibers (Au‐BC) nanocomposite as a platform for amperometric determination of glucose is presented. Two enzymes, glucose oxidase (GOx) and horseradish peroxidase (HRP) were immobilized in Au‐BC nanocomposite modified glassy carbon electrode at the same time. A sensitive and fast amperometric response to glucose was observed in the presence of electron mediator (HQ). Both of GOx and HRP kept their biocatalytic activities very well in Au‐BC nanocomposite. The detection limit for glucose in optimized conditions was as low as 2.3 µM with a linear range from 10 µM to 400 µM. The biosensor was successfully applied to the determination of glucose in human blood samples.  相似文献   

10.
《Electroanalysis》2017,29(11):2507-2515
In the present study, a novel enzymatic glucose biosensor using glucose oxidase (GOx) immobilized into (3‐aminopropyl) triethoxysilane (APTES) functionalized reduced graphene oxide (rGO‐APTES) and hydrogen peroxide sensor based on rGO‐APTES modified glassy carbon (GC) electrode were fabricated. Nafion (Nf) was used as a protective membrane. For the characterization of the composites, Fourier transform infrared spectroscopy (FTIR), X‐ray powder diffractometer (XRD), and transmission electron microscopy (TEM) were used. The electrochemical properties of the modified electrodes were investigated using electrochemical impedance spectroscopy, cyclic voltammetry, and amperometry. The resulting Nf/rGO‐APTES/GOx/GC and Nf/rGO‐APTES/GC composites showed good electrocatalytical activity toward glucose and H2O2, respectively. The Nf/rGO‐APTES/GC electrode exhibited a linear range of H2O2 concentration from 0.05 to 15.25 mM with a detection limit (LOD) of 0.017 mM and sensitivity of 124.87 μA mM−1 cm−2. The Nf/rGO‐APTES/GOx/GC electrode showed a linear range of glucose from 0.02 to 4.340 mM with a LOD of 9 μM and sensitivity of 75.26 μA mM−1 cm−2. Also, the sensor and biosensor had notable selectivity, repeatability, reproducibility, and storage stability.  相似文献   

11.
The mixed‐valent nickel hexacyanoferrate (NiHCF) and poly(3,4‐ethylenedioxythiophene) (PEDOT) hybrid film (NiHCF‐PEDOT) was prepared on a glassy carbon electrode (GCE) by multiple scan cyclic voltammetry. The films were characterized using atomic force microscopy, field emission scanning electron microscopy, energy dispersive spectroscopy, X‐ray diffraction, and electrochemical impedance spectroscopy (AC impedance). The advantages of these films were demonstrated for the detection of ascorbic acid (AA) using cyclic voltammetry and amperometric techniques. The electrocatalytic oxidation of AA at different electrode surfaces, such as the bare GCE, the NiHCF/GCE, and the NiHCF‐PEDOT/GCE modified electrodes, was determined in phosphate buffer solution (pH 7). The AA electrochemical sensor exhibited a linear response from 5×10−6 to 1.5×10−4 M (R2=0.9973) and from 1.55×10−4 to 3×10−4 M (R2=0.9983), detection limit=1×10−6 M, with a fast response time (3 s) for AA determination. In addition, the NiHCF‐PEDOT/GCE was advantageous in terms of its simple preparation, specificity, stability and reproducibility.  相似文献   

12.
《Electrophoresis》2018,39(16):2131-2135
An electrochemical sensor for the detection of glucose using thread‐based electrodes and fabric is described. This device is relatively simple to fabricate and can be used for multiple readings after washing with ethanol. The fabrication of the chip consisted of two steps. First, three thread‐based electrodes (reference, working, and counter) were fabricated by painting pieces of nylon thread with either layered silver ink and carbon ink or silver/silver chloride ink. The threads were then woven into a fabric chip with a beeswax barrier molded around the edges in order to prevent leaks from the tested solutions. A thread‐based working electrode consisting of one layer of silver underneath two layers of carbon was selected to fabricate the final sensor system. Using the chip, a PBS solution containing glucose oxidase (GOx) (10 mg/mL), potassium ferricyanide (K3[Fe(CN)6]) (10 mg/mL) as mediator, and different concentrations of glucose (0‐25 mM), was measured by cyclic voltammetry (CV). It was found that the current output from the oxidation of glucose was proportional to the glucose concentrations. This thread‐based electrode system is a viable sensor platform for detecting glucose in the physiological range.  相似文献   

13.
Glucose biosensors based on lyophilised, crystalline and cross-linked glucose oxidase (GOx, CLEC(R)) and commercially available lyophilised GOx immobilised on top of glassy carbon electrodes modified with electrodeposited Prussian Blue are critically compared. Two procedures were carried out for preparing the biosensors: (1) deposition of one layer of adsorbed GOx dissolved in an aqueous solution followed by deposition of two layers of low molecular weight Nafion(R) dissolved in 90% ethanol, and (2) deposition of two layers of a mixture of GOx with Nafion dissolved in 90% ethanol. The performance of the biosensors was evaluated in terms of linear response range for hydrogen peroxide and glucose, detection limit, and susceptibility to some common interfering species (ascorbic acid, acetaminophen and uric acid). The operational stability of the biosensors was evaluated by applying a steady potential of -50 mV versus Ag/AgCl to the glucose biosensor and injecting standard solutions of hydrogen peroxide and glucose (50 muM and 1.0 mM, respectively, in phosphate buffer) for at least 5 h in a flow-injection system. Scanning electron microscopy was used for visualisation of the Prussian Blue redox catalyst and in the presence of the different GOx preparations on the electrode surface.  相似文献   

14.
A novel complex material was fabricated by three steps. In the first step, gold nanoparticle (Aunano) was prepared with the method of chemistry and dialysis. In the second step, 4‐aminothiophenol (AT) was encapsulated in the cavity of β‐cyclodextrin and formed inclusion complex, cyclodextrin/4‐aminothiophenol (CD/AT). And then inclusion complex was adsorbed to the surface of Aunano based on the bond of Au‐S interaction. In the last step, a complex material, cyclodextrin/poly(4‐aminothiophenol)‐Au nanoparticles (CD/PAT‐Aunano) was obtained by the polymerizing in the acid solution initiated by chlorauric acid. The CD/PAT‐Aunano has spherical nanostructure with the average diameter of 55 nm. Glucose oxidase (GOx) was anchored with this complex material and direct electrochemistry of GOx was achieved. A couple of stable and well‐defined redox peaks were observed with the formal potential (E0′) of ‐0.488 V (vs. SCE) in a pH 6.98 buffer solution. The GOx modified electrode also exhibited an excellent electrocatalytic activity to the reduction of glucose, a linearity range for determination of glucose is from 0.25 mM to 16.0 mM with a detection limit of 0.09 mM (S/N = 3). This protocol had potential application to fabricate the third‐generation biosensor.  相似文献   

15.
Ordered 3D interconnected macroporous Prussian blue (PB) films were electrochemically fabricated by using colloidal crystals of polystyrene beads as sacrificial templates. The prepared PB film electrodes have excellent catalytic activity towards the reduction of hydrogen peroxide. The PB structure was further used as functional interface for fabricating an enzyme‐based glucose sensor by using surface modification technique based on the electrostatic interactions. The resulted sensor has higher functional density, and larger surface area. The interconnected macroporous structure allows enhanced mass transport. These characteristics of the sensor enable us to detect glucose with high sensitivity. Therefore, the present 3D ordered macroporous film sensor exhibits wide linear detection range towards glucose, acceptable reproducibility and operational and storage stability. The present approach is promising for the generation of high‐enzyme‐content thin films with tailored bioactivity.  相似文献   

16.
An amperometric biosensor for determining glucose based on deflavination of the enzyme glucose oxidase and subsequent reconstitution of the apo‐protein with a complexed flavin adenine dinucleotide (FAD) monolayer is described. The GOx‐reconstituted electrode exhibited excellent electrocatalytic activities towards the reduction and oxidation of hydrogen peroxide as well. The prepared biosensor showed an excellent performance for glucose at +0.5 V with a high sensitivity (5.94 μA/mM) and relatively good response time (~12 s) in a wide concentration range of 1–17 mM (correlation coefficient of 0.9998). The applicability to blood analysis was also evaluated.  相似文献   

17.
A novel amperometric glucose biosensor was fabricated by in situ incorporating glucose oxidase (GOD) within the sol‐gel silica film on a Prussian blue (PB) modified electrode. The method is simple and controllable, which combined the merits of in situ immobilizing biomolecules in sol‐gel silica film by electrochemical method and the synergic catalysis effects of PB and GOD molecules. Scanning electron microscopy (SEM) showed that the GOD/sol‐gel silica film was homogeneous with a large number of three‐dimensional nanopores, which not only enhanced mass transport, but also maintained the active configuration of the enzyme molecule and prevented the leakage of enzyme, therefore improved the stability and sensitivity of the biosensor. The fabricated biosensor showed fast response time (10 s), high sensitivity (26.6 mA cm?2 M?1), long‐term stability, good suppression of interference, and linear range of 0.01 mM–5.8 mM with a low detection limit of 0.94 μM for the detection of glucose. In addition, the biosensor was successfully applied to determine glucose in human serum samples.  相似文献   

18.
We report an innovative supramolecular architecture for bienzymatic glucose biosensing based on the non‐covalently functionalization of multi‐walled carbon nanotubes (MWCNTs) with two proteins, glucose oxidase (GOx) (to recognize glucose) and avidin (to allow the specific anchoring of biotinylated horseradish peroxidase (b‐HRP)). The optimum functionalization was obtained by sonicating for 10 min 0.50 mg mL?1 MWCNTs in a solution of 2.00 mg mL?1 GOx+1.00 mg mL?1avidin prepared in 50 : 50 v/v ethanol/water. The sensitivity to glucose for glassy carbon electrodes (GCE) modified with MWCNTs‐GOx‐avidin dispersion and b‐HRP (GCE/MWCNTs‐GOx‐avidin/b‐HRP), obtained from amperometric experiments performed at ?0.100 V in the presence of 5.0×10?4 M hydroquinone, was (4.8±0.3) μA mM?1 (r2=0.9986) and the detection limit was 1.2 μM. The reproducibility for 5 electrodes using the same MWCNTs/GOx‐avidin dispersion was 4.0 %, while the reproducibility for 3 different dispersions and 9 electrodes was 6.0 %. The GCE/MWCNT‐GOx‐avidin/b‐HRP was successfully used for the quantification of glucose in a pharmaceutical product and milk.  相似文献   

19.
In this study, Prussian blue (PB) film on the electroreduced graphene oxide (ERGO)‐modified Au electrode surface (ERGO/PB) is easily prepared by means of cyclic voltammetric technique in the mixture of K3Fe(CN)6 and FeCl3. Its electrochemical behaviors for NADH biosensor are studied. The structural and morphological characters of modified electrode material are analyzed with using of XPS, XRD, Raman, EDS, and SEM techniques. ERGO/PB hybrid nanocomposite for NADH biosensor is exhibited to the higher catalytic effect (linear range from 1.0 to 100 μM, detection limit of 0.23 μM at S/N=3) compared to naked Au, ERGO‐modified Au, and PB‐modified Au electrodes. In addition to, ERGO/PB electrode was used to voltammetric and amperometric detection of H2O2. ERGO/PB electrodes also showed the same behavior as the NADH sensor. This ERGO/PB‐modified electrode supplied a simple, new, and low‐cost route for amperometric sensing of both NADH and H2O2.  相似文献   

20.
A novel amperometric glucose biosensor based on layer‐by‐layer (LbL) electrostatic adsorption of glucose oxidase (GOx) and dendrimer‐encapsulated Pt nanoparticles (Pt‐DENs) on multiwalled carbon nanotubes (CNTs) was described. Anionic GOx was immobilized on the negatively charged CNTs surface by alternatively assembling a cationic Pt‐DENs layer and an anionic GOx layer. Transmission electron microscopy images and ζ‐potentials proved the formation of layer‐by‐layer nanostructures on carboxyl‐functionalized CNTs. LbL technique provided a favorable microenvironment to keep the bioactivity of GOx and prevent enzyme molecule leakage. The excellent electrocatalytic activity of CNTs and Pt‐DENs toward H2O2 and special three‐dimensional structure of the enzyme electrode resulted in good characteristics such as a low detection limit of 2.5 μM, a wide linear range of 5 μM–0.65 mM, a short response time (within 5 s), and high sensitivity (30.64 μA mM?1 cm?2) and stability (80% remains after 30 days).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号