首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Diallyldimethylammonium chloride modified magnetic nanoparticles were synthesized by the “thiol‐ene” click chemistry reaction. Diallyldimethylammonium chloride rendered the material plenty of quaternary ammonium groups, and thus the excellent aqueous dispersibility and anion‐exchange capability. The novel material was then used as the magnetic solid‐phase extraction sorbent to extract eight non‐steroidal anti‐inflammatory drugs from water samples. Combined with high‐performance liquid chromatography and ultraviolet detection, under the optimal conditions, the developed method exhibited wide linearity ranges (1–1000, 2–1000, and 5–1000 ng/mL) with recoveries of 88.0–108.6% and low limits of detection (0.3–1.5 ng/mL). Acceptable precision was obtained with satisfactory intra‐ and inter‐day relative standard deviations of 0.4–4.4% (= 3) and 1.1–5.5% (= 3), respectively. Batch‐to‐batch reproducibility was acceptable with relative standard deviations <9.7%. The hydrophilic magnetic nanoparticle featured with quaternary ammonium groups showed high analytical potential for acidic analytes in environmental water samples.  相似文献   

2.
The separation of a compound of interest from its structurally similar homologues to produce high‐purity natural products is a challenging problem. This work proposes a novel method for the separation of iristectorigenin A from its structurally similar homologues by ionic‐liquid‐based ultrasound‐assisted extraction and the subsequent screening and isolation of potential α‐glucosidase inhibitors via ultrafiltration and semipreparative high‐performance liquid chromatography. Ionic‐liquid‐based ultrasound‐assisted extraction was successfully applied to the extraction of tectorigenin, iristectorigenin A, irigenin, and irisflorentin from Belamcanda chinensis . The optimum conditions for the efficient extraction of isoflavones were determined as 1.0 M 1‐ethyl‐3‐methylimidazolium tetrafluoroborate with extraction time of 30 min and a solvent to solid ratio of 30 mL/g. Ultrafiltration with liquid chromatography and mass spectrometry was applied to screen and identify α‐glucosidase inhibitors from B. chinensis , followed by the application of semipreparative high‐performance liquid chromatography to separate and isolate the active constituents. Four major compounds including tectorigenin, iristectorigenin A, irigenin, and irisflorentin were screened and identified as α‐glucosidase inhibitors, and then the four active compounds abovementioned were subsequently isolated by semipreparative high‐performance liquid chromatography (99.89, 88.97, 99.79, and 99.97% purity, respectively). The results demonstrate that ionic liquid extraction can be successfully applied to the extraction of isoflavones from B. chinensis .  相似文献   

3.
A novel hollow‐fiber liquid‐phase microextraction based on oil‐in‐salt was proposed and introduced for the simultaneous extraction and enrichment of the main active compounds of hesperidin, honokiol, shikonin, magnolol, emodin, and β,β′‐dimethylacrylshikonin in a formula of Zi‐Cao‐Cheng‐Qi decoction and the single herb, Fructus Aurantii Immaturus , Cortex Magnoliae Officinalis , Radix et Rhizoma , and Lithospermum erythrorhizon , composing the formula prior to their analysis by high‐performance liquid chromatography. The results obtained by the proposed procedure were compared with those obtained by conventional hollow‐fiber liquid‐phase microextraction, and the proposed procedure mechanism was described. In the procedure, a hollow‐fiber segment was first immersed in organic solvent to fill the solvent in the fiber lumen and wall pore, and then the fiber was again immersed into sodium chloride solution to cover a thin salt membrane on the fiber wall pore filling organic solvent. Under the optimum conditions, the enrichment factors of the analytes were 0.6–109.4, linearities were 0.002–12 μg/mL with r 2 ≥ 0.9950, detection limits were 0.6–12 ng/mL, respectively. The results showed that oil‐in‐salt hollow‐fiber liquid‐phase microextraction is a simple and effective sample pretreatment procedure and suitable for the simultaneous extraction and concentration of trace‐level active compounds in traditional Chinese medicine.  相似文献   

4.
Pesticides have posed significant threats to aquatic ecosystems, yet little is known about their transformation products. The challenge is to simultaneously analyze various pesticides and transformation products in water as they have distinct physicochemical properties. A mix‐mode solid phase extraction method was established to simultaneously analyze current‐use pesticides and their transformation products using a mixture of hydrophile–lipophile balance, weak anion, and cation exchange resins (2:1:1, w/w/w) in combination with high‐performance liquid chromatography and tandem mass spectrometry for chemical quantification. Neutral, acidic, and alkaline methanol were used as the elution solvent. Box‐Behnken design was applied to optimize extraction conditions. Optimal conditions were as follows: sorbent mass, 200 mg; volume of elution solvent, 5 mL × 3; pH 4. The method was validated for compounds at concentrations from 20 to 1000 ng/L in different types of water samples, with recovery being from 43.5 ± 3.1 to 141 ± 35%. Low method detection limits (0.02?5.6 ng/L) implied that the developed method was sensitive. Finally, the method was applied to monitor current‐use pesticides and their transformation products in natural waters. Frequent detection of transformation products of pesticides indicated that their contribution to aquatic risk should not be ignored.  相似文献   

5.
The application of layered double hydroxide–Al2O3–polymer mixed‐matrix disks for solid‐phase extraction is reported for the first time. Al2O3 is embedded in a polymer matrix followed by an in situ metal‐exchange process to obtain a layered double hydroxide–Al2O3–polymer mixed‐matrix disk with excellent flow‐through properties. The extraction performance of the prepared disks is evaluated as a proof of concept for the automated extraction using sequential injection analysis of organic acids (p‐hydroxybenzoic acid, 3,4‐dihydroxybenzoic acid, gallic acid) following an anion‐exchange mechanism. After the solid‐phase extraction, phenolic acids were quantified by reversed‐phase high‐performance liquid chromatography with diode‐array detection using a core–shell silica–C18 stationary phase and isocratic elution (acetonitrile/0.5% acetic acid in pure water, 5:95, v/v). High sensitivity and reproducibility were obtained with limits of detection in the range of 0.12–0.25 μg/L (sample volume, 4 mL), and relative standard deviations between 2.9 and 3.4% (10 μg/L, = 6). Enrichment factors of 34–39 were obtained. Layered double hydroxide–Al2O3–polymer mixed‐matrix disks had an average lifetime of 50 extractions. Analyte recoveries ranged from 93 to 96% for grape juice and nonalcoholic beer samples.  相似文献   

6.
A novel mercaptotetrazole‐silica hybrid monolithic column was prepared for capillary liquid chromatography, in which the thiol‐end mercaptotetrazole was mixed with hydrolyzed γ‐methacryloxypropyltrimethoxysilane and tetramethyloxysilane for the co‐polycondensation and thiol‐ene click reaction in a one‐pot process. The effects of the molar ratio of silanes, the amount of mercaptotetrazole, and the volume of porogen on the morphology, permeability and pore properties of the as‐prepared mercaptotetrazole‐silica hybrid monoliths were investigated in detail. A series of test compounds including alkylbenzenes, amides and anilines were employed for evaluating the retention behaviors of the mercaptotetrazole‐silica hybrid monolithic columns. The results demonstrated that the mercaptotetrazole‐silica hybrid monoliths exhibited hydrophobic, hydrophilic as well as ion‐exchange interaction. The run‐to‐run, column‐to‐column and batch‐to‐batch reproducibilities of the mercaptotetrazole‐silica hybrid monoliths were satisfactory with the relative standard deviations less than 1.4 (= 5), 3.9 (= 3) and 4.0% (= 5), respectively. In addition, the mercaptotetrazole‐silica hybrid monolith was further applied to the separation of sulfonamides, nucleobases and protein tryptic digests. These successful applications confirmed the promising potential of the mercaptotetrazole‐silica hybrid monolith in the separation of complex samples.  相似文献   

7.
An efficient combination strategy based on high‐speed shear dispersing emulsifier technique and high‐performance countercurrent chromatography was developed for on‐line extraction and isolation of carotenoids from the fruits of Lycium barbarum. In this work, the high‐speed shear dispersing emulsifier technique has been employed to extract crude extracts using the upper phase of high‐performance countercurrent chromatography solvent system composed of n‐hexane?dichloromethane?acetonitrile (10:4:6.5, v/v) as the extraction solvent. At the separation stage, the high‐performance counter‐current chromatography process adopts elution–extrusion mode and the upper phase of the solvent system as stationary phase (reverse‐phase mode). As a result, three compounds including zeaxanthin, zeaxanthin monopalmitate, and zeaxanthin dipalmitate with purities of 89, 90, and 93% were successfully obtained in one extraction‐separation operation within 120 min. The targeted compounds were analyzed and identified by high‐performance liquid chromatography, mass spectrometry, and NMR spectroscopy. The results indicated that the present on‐line combination method could serve as a simple, rapid, and effective way to achieve weak polar and unstable compounds from natural products.  相似文献   

8.
A new analytical method for the simultaneous determination of trace levels of seven prohibited N‐nitrosamines (N‐nitrosodimethylamine, N‐nitrosoethylmethylamine, N‐nitrosopyrrolidine, N‐nitrosodiethylamine, N‐nitrosopiperidine, N‐nitrosomorpholine, and N‐nitrosodiethanolamine) in cosmetic products has been developed. The method is based on vortex‐assisted reversed‐phase dispersive liquid–liquid microextraction, which allows the extraction of highly polar compounds, followed by liquid chromatography with mass spectrometry. The variables involved in the extraction process were studied to obtain the highest enrichment factor. Under the selected conditions, 75 μL of water as extraction solvent was added to 5 mL of n‐hexane sample solution and assisted by vortex mixing during 30 s to form the cloudy solution. The method was successfully validated showing good linearity (0.5–50 ng/mL), enrichment factors up to 65 depending on the target compound, limits of detection values of 1.8–50 ng/g, and good repeatability (RSD < 9.8%). Finally, the proposed method was applied to different cosmetic samples. Quantitative relative recovery values (80–113%) were obtained, thus showing that matrix effects were negligible. The achieved analytical features of the proposed method, besides of its simplicity and affordability, make it useful to perform the quality control of cosmetic products to ensure the safety of consumers.  相似文献   

9.
A simple, accurate, and highly sensitive method was developed for the determination of 13 carbohydrates in polysaccharide of Spirulina platensis based on high‐performance anion‐exchange chromatography coupled with pulsed amperometric detection and mass spectrometry. Samples were extracted with deionized water using ultrasonic‐assisted extraction, and the ultrasound‐assisted extraction conditions were optimized by Box–Behnken design. Then the extracted polysaccharide was hydrolyzed by adding 1 mol/L trifluoroacetic acid before determination by high‐performance anion‐exchange chromatography coupled with pulsed amperometric detection and confirmed by high‐performance anion‐exchange chromatography coupled with mass spectrometry. The high‐performance anion‐exchange chromatography coupled with pulsed amperometric detection method was performed on a CarboPac PA20 column by gradient elution using deionized water, 0.1 mol/L sodium hydroxide solution, and 0.4 mol/L sodium acetate solution. Excellent linearity was observed in the range of 0.05–10 mg/L. The average recoveries ranged from 80.7 to 121.7%. The limits of detection and limits of quantification for 13 carbohydrates were 0.02–0.10 and 0.2–1.2  μg/kg, respectively. The developed method has been successfully applied to ambient samples, and the results indicated that high‐performance anion‐exchange chromatography coupled with pulsed amperometric detection and mass spectrometry could provide a rapid and accurate method for the simultaneous determination of carbohydrates.  相似文献   

10.
In this study, a new covalent organic framework, consisting of tetra(4‐aminophenyl)porphyrin and tris(4‐formyl phenyl)amine, was layer‐by‐layer immobilized on stainless‐steel wire as a coating for microextraction. The fabrication process was easy and controllable under mild conditions. The as‐grown fiber was applied to extract polycyclic aromatic hydrocarbons in aqueous solution via head‐space solid‐phase microextraction. Furthermore, it was analyzed by gas chromatography with a flame ionization detector. A wide linear range (0.1–50 µg/L), low limits of detection (0.006–0.024 µg/L, signal‐to‐noise ratio = 3), good repeatability (intra‐fiber, n = 6, 3.1–8.50%), and reproducibility (fiber to fiber; n = 3, 5.79–9.98%), expressed as relative standard deviations, demonstrate the applicability of the newly developed coating. This new material was successfully utilized in real sample extraction with a satisfactory result. Potential parameters affecting the extraction efficiency, including extraction temperature and extraction time, salt concentration, agitation speed, sample volume, desorption temperature, and time, were also optimized and discussed.  相似文献   

11.
Polypyrrole‐magnetite dispersive micro‐solid‐phase extraction method combined with ultraviolet‐visible spectrophotometry was developed for the determination of selected cationic dyes in textile wastewater. Polypyrrole‐magnetite was used as adsorbent due to its thermal stability, magnetic properties, and ability to adsorb Rhodamine 6G and crystal violet. Dispersive micro‐solid‐phase extraction parameters were optimized, including sample pH, adsorbent amount, extraction time, and desorption solvent. The optimum polypyrrole‐magnetite dispersive micro‐solid phase‐extraction conditions were sample pH 8, 60 mg polypyrrole‐magnetite adsorbent, 5 min of extraction time, and acetonitrile as the desorption solvent. Under the optimized conditions, the polypyrrole‐magnetite dispersive micro‐solid‐phase extraction with ultraviolet‐visible method showed good linearity in the range of 0.05–7 mg/L (R 2 > 0.9980). The method also showed a good limit of detection for the dyes (0.05 mg/L) and good analyte recoveries (97.4–111.3%) with relative standard deviations < 10%. The method was successfully applied to the analysis of dyes in textile wastewater samples where the concentration found was 1.03 mg (RSD ±7.9%) and 1.13 mg/L (RSD ± 4.6%) for Rhodamine 6G and crystal violet, respectively. It can be concluded that this method can be adopted for the rapid extraction and determination of dyes at trace concentration levels.  相似文献   

12.
Using factor analysis and stepwise linear regression methods, two parameters – CMR and ECCR – were selected from eight solute‐related structure parameters as the most retention‐influencing parameters. The relationships between the retention data (k ´) and the two structure parameters were established for 13 O‐aryl,O‐(1‐methylthioethylideneamino)phosphate compounds under a wide range of experimental conditions. The retention data (k ´) of another seven compounds with similar structures were predicted using these QSRR equations. Good agreement was obtained between the experimental k ´ values and predicted ones.  相似文献   

13.
A solvent‐free method that uses headspace solid‐phase microextraction and gas chromatography with flame ionization detection is proposed for the determination of lignin‐derived phenols in sediments. The extraction and derivatization conditions for the simultaneous analysis of acetosyringone, acetovanillone, syringaldehyde, vanillin, ferulic acid, syringic acid, vanillic acid, p‐hydroxybenzoic acid, and p‐coumaric acid were optimized using a central composite design. After optimization, the best results were obtained with the following conditions: exposure of the polyacrylate fiber to the headspace with 60 μL of N ,O‐bis(trimethylsilyl)trifluoroacetamide as a derivatizing agent for 15 min and then extraction in the headspace of 100 mg of sediment (previously spiked with lignin‐derived phenols) for 35 min. The accuracy of the method was estimated based on recovery tests at two concentration levels and by comparison with a high‐performance liquid chromatography method reported in the literature. Based on the t‐test with a confidence level of 95%, no statistical differences were observed. The detection and quantification limits for the target compounds varied according to their characteristics: values at the microgram per gram level for nonacid compounds and milligram per gram level for phenolic acids, due to the lower volatility of the derivatives.  相似文献   

14.
A novel ionic‐liquid‐based vortex‐simplified matrix solid‐phase dispersion method using 2,6‐dimethyl‐β‐cyclodextrin was established by ultra high performance liquid chromatography coupled with a photodiode array detector. 2,6‐Dimethyl‐β‐cyclodextrin was first used as a promising adsorbent in this proposed method for simultaneous determination of eight compounds in Gardeniae fructus. These compounds are terpenoids (geniposidic acid, genipin‐1‐β‐D‐gentiobioside, geniposide, 8‐o‐acetyl shanzhiside methyl ester), crocins (crocin‐I, crocin‐II), quinic acid derivatives (chlorogenic acid), and flavonoids (isoquercitrin), respectively. Several parameters were investigated in the adsorption and desorption processes to obtain the optimal conditions, including 2,6‐dimethyl‐β‐cyclodextrin as sorbent, 0.5 mL 100 mM 1‐dodecyl‐3‐methylimidazolium hydrogen sulfate as the extraction solvent, 2:1 of sample/sorbent ratio, grinding for 2 min and vortexing for 60 s. The recoveries of the eight compounds ranged from 96.6 to 100% (<3.50%). The limits of detection and quantification were in the range of 0.02–0.30 and 0.06–1.25  μg/mL, respectively. Meanwhile, a good linearity was attained with r values (>0.9997). The established method showed higher extraction efficiency and less reagent consumption than traditional matrix solid phase dispersion and ultrasonic‐assisted extraction. Hence, it could be applied for sample preparation and analysis of natural products.  相似文献   

15.
A new facile magnetic micro‐solid‐phase extraction coupled to gas chromatography and mass spectrometry detection was developed for the extraction and determination of selected antidepressant drugs in biological fluids using magnetite‐MCM‐41 as adsorbent. The synthesized sorbent was characterized by several spectroscopic techniques. The maximum extraction efficiency for extraction of 500 μg/L antidepressant drugs from aqueous solution was obtained with 15 mg of magnetite‐MCM‐41 at pH 12. The analyte was desorbed using 100 μL of acetonitrile prior to gas chromatography determination. This method was rapid in which the adsorption procedure was completed in 60 s. Under the optimized conditions using 15 mL of antidepressant drugs sample, the calibration curve showed good linearity in the range of 0.05–500 μg/L (r 2 = 0.996–0.999). Good limits of detection (0.008–0.010 μg/L) were obtained for the analytes with good relative standard deviations of <8.0% (n  = 5) for the determination of 0.1, 5.0, and 500.0 μg/L of antidepressant drugs. This method was successfully applied to the determination of amitriptyline and chlorpromazine in plasma and urine samples. The recoveries of spiked plasma and urine samples were in the range of 86.1–115.4%. Results indicate that magnetite micro‐solid‐phase extraction with gas chromatography and mass spectrometry is a convenient, fast, and economical method for the extraction and determination of amitriptyline and chlorpromazine in biological samples.  相似文献   

16.
Two novel high‐specific surface area polymeric sorbents (HXLPP‐SAXa and HXLPP‐SAXb) were synthesised and evaluated as solid‐phase extraction sorbents. The novel sorbents under study are based on hypercrosslinked polymer microspheres and designed specifically to offer ion‐exchange properties; the specific polymers of interest in the current work have been chemically modified in such a way as to impart a tuneable level of strong anion‐exchange character onto the sorbents. The novel sorbents were applied as strong anion‐exchange sorbents in solid‐phase extraction studies, with the goal being to selectively extract a group of acidic compounds from complex environmental samples in an efficient manner. Out of two HXLPP‐SAX resins evaluated in this study, it was found that the sorbent with the lower ion‐exchange capacity (HXLPP‐SAXa) gave rise to the best overall performance characteristics and, indeed, was found to compare favourably to the solid‐phase extraction performance of commercial strong anion‐exchange sorbents. When the HXLPP‐SAXa sorbent was applied to the solid‐phase extraction of environmental water samples, the result showed quantitative and selective extraction of low levels of acidic pharmaceuticals from 500 mL of river water and 100 mL of effluent wastewater.  相似文献   

17.
A hyphenated strategy by off‐line coupling of 1,1′‐diphenyl‐2‐picrylhydrazyl‐high‐performance liquid chromatography, high‐speed countercurrent chromatography, and preparative high‐performance liquid chromatography was established to screen and separate antioxidants from ethyl acetate fraction of the roots of Polygonum multiflorum. Under the targeted guidance of 1,1′‐diphenyl‐2‐picrylhydrazyl‐high‐performance liquid chromatography experiment, 12 compounds were identified as potential antioxidants and readily isolated by high‐speed counter‐current chromatography and preparative high‐performance liquid chromatography. Ultraviolet spectroscopy, mass spectrometry, and 1H NMR spectroscopy were employed to identify their structures, which were assigned as gallic acid ( 1 , 6.2 mg, 98.28%), catechin ( 2 , 8.8 mg, 90.69%), epicatechin ( 3 , 4.1 mg, 96.71%), polydatin ( 4 , 5.3 mg, 94.91%), 2,3,5,4′‐tetrahydroxy stilbene‐2‐Οβ‐D‐glucoside ( 5 , 20.2 mg, 95.23%), piceatannol ( 6 , 5.3 mg, 96.85%), rutin ( 7 , 5.4 mg, 97.92%), resveratrol ( 8 , 5.2 mg, 96.94%), isorhapontigenin ( 9 , 11.4 mg, 94.81%), hyperoside ( 10 , 9.7 mg, 98.52%), rhein ( 11 , 4.9 mg, 97.46%), and emodin ( 12 , 8.2 mg, 95.74%). Notably, compounds 6 and 9 were isolated from Polygonum multiflorum for the first time. In addition, antioxidant activity of compounds 1–12 were evaluated, and compounds 1–8 and 10 exhibited stronger antioxidant activity than ascorbic acid (positive control). These results indicated that the proposed method is a highly efficient strategy to screen and isolate antioxidants from complex natural products.  相似文献   

18.
A simple, selective, and accurate ultra‐high performance liquid chromatography coupled with quadrupole time‐of‐flight mass spectrometry method was established and validated for the efficient separation and quantification of polyurethane amine catalysts in polyether polyols. Amine catalysts were primarily separated in polyether polyol‐based sample by solid‐phase extraction, and further baseline separated on a reversed‐phase/cation‐exchange mixed‐mode column (SiELC Primesep™ 200) using 0.1% trifluoroacetic acid/acetonitrile as a mobile phase in gradient elution mode at a flow rate of 0.2 mL/min. High‐resolution quadrupole time‐of‐flight mass spectrometry analysis in electrospray ionization positive mode allowed the identification as N,N′‐bis[3‐(dimethylamino)propyl]urea, N‐[2‐(2‐dimethylaminoethoxy)ethyl]‐N‐methyl‐1,3‐propanediamine, and N,N,N′,N′‐tetramethyldipropylenetriamine. The method was validated and presented good linearity for all the analytes in blank matrices within the concentration range of 0.20–5.0 or 0.1–2.0 μg/mL with the correlation coefficients (R2) ranging from 0.986 to 0.997. Method recovery ranged within 81–105% at all three levels (80, 100, and 120% of the original amount) with relative standard deviations of 1.0–6.2%. The limits of detection were in the range of 0.007–0.051 μg/mL. Good precision was obtained with relative standard deviation below 3.2 and 0.72% for peak area and retention time of three amines, respectively.  相似文献   

19.
In this study, a new method was developed in which a biosorbent material is used as the extractor phase in conjunction with a recently described sample preparation technique called thin‐film microextraction and a 96‐well plate system. The method was applied for the determination of emerging contaminants, such as 3‐(4‐methylbenzylidene) camphor, ethylparaben, triclocarban, and bisphenol A in water samples. The separation and detection of the analytes were performed by high‐performance liquid chromatography with diode array detection. These contaminants are considered hazardous to human health and other living beings. Thus, the development of an analytical method to determine these compounds is of great interest. The extraction parameters were evaluated using multivariate and univariate optimization techniques. The optimum conditions for the method were 3 h of extraction time, 20 min of desorption with 300 μL of acetonitrile and methanol (50:50, v/v), and the addition of 5% w/v sodium chloride to the sample. The analytical figures of merit showed good results with linear correlation coefficients higher than 0.99, relative recoveries of 72–125%, interday precision (= 3) of 4–18%, and intraday precision (= 9) of 1–21%. The limit of detection was 0.3–5.5 μg/L, and the limit of quantification was 0.8–15 μg/L.  相似文献   

20.
A method of reversed‐phase ion‐pair solid‐phase extraction combined with ion chromatography for determination of pyrrolidinium ionic liquid cations (N‐methyl‐N‐ethyl pyrrolidinium, N‐methyl‐N‐propyl pyrrolidinium, and N‐methyl‐N‐butyl pyrrolidinium) in water samples was developed in this study. First, ion‐pair reagent sodium heptanesulfonate was added to the water samples after static, centrifugation and filteration. Then, pyrrolidinium cations in the samples were enriched and purified by a reversed‐phase solid‐phase extraction column, and eluted from the column with methanol aqueous solution as eluent. Finally, the eluate collected was analyzed by ion chromatography. The separation and direct conductivity detection of these pyrrolidinium cations by ion‐exchange column using 1.0 mM methanesulfonic acid (in water)/acetonitrile (97:3, v:v) as mobile phase was achieved within 10 min. By using this method, pyrrolidinium cations in Songhua River and Hulan River were successfully extracted with the recoveries ranging from 74.2 to 97.1% and the enrichment factor assessed as 60. Pyrrolidinium cations with the concentration of 0.001?0.03 mg/L can be enriched and detected in the water samples. The developed method for the determination of pyrrolidinium ionic liquid cations in water samples is simple and reliable, which provides a reference for the study of the potential impact of ionic liquids on the environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号