共查询到20条相似文献,搜索用时 15 毫秒
1.
Isabel Pastoriza‐Santos Jorge Prez‐Juste Susana Carregal‐Romero Pablo Hervs LuisM. Liz‐Marzn 《化学:亚洲杂志》2006,1(5):730-736
Metallodielectric composites with tunable optical properties were prepared by layer‐by‐layer assembly of gold nanorods on polystyrene (PS) spheres and subsequent deposition of SiO2 or TiO2 encapsulating shells through a sol–gel process. The optical properties of the core‐shells were tailored in the visible and the near‐infrared region through the gold nanorod aspect ratio and the gold nanoparticle density. Removal of the PS core by dissolution in an appropriate solvent, such as THF, yielded metallodielectric hollow shells with optical properties identical to those of the original composites. The presence of gold and the porosity of the SiO2 or TiO2 shells, suitable to allow diffusion of reactants and products, make these materials of interest as catalysts, as demonstrated by the reduction of potassium hexacyanoferrate(III) with NaBH4. 相似文献
2.
Miaomiao Ye Qiao Zhang Yongxing Hu Jianping Ge Dr. Zhenda Lu Le He Zhonglin Chen Prof. Yadong Yin Prof. 《Chemistry (Weinheim an der Bergstrasse, Germany)》2010,16(21):6243-6250
Core–shell structured Fe3O4/SiO2/TiO2 nanocomposites with enhanced photocatalytic activity that are capable of fast magnetic separation have been successfully synthesized by combining two steps of a sol–gel process with calcination. The as‐obtained core–shell structure is composed of a central magnetite core with a strong response to external fields, an interlayer of SiO2, and an outer layer of TiO2 nanocrystals with a tunable average size. The convenient control over the size and crystallinity of the TiO2 nanocatalysts makes it possible to achieve higher photocatalytic efficiency than that of commercial photocatalyst Degussa P25. The photocatalytic activity increases as the thickness of the TiO2 nanocrystal shell decreases. The presence of SiO2 interlayer helps to enhance the photocatalytic efficiency of the TiO2 nanocrystal shell as well as the chemical and thermal stability of Fe3O4 core. In addition, the TiO2 nanocrystals strongly adhere to the magnetic supports through covalent bonds. We demonstrate that this photocatalyst can be easily recycled by applying an external magnetic field while maintaining their photocatalytic activity during at least eighteen cycles of use. 相似文献
3.
Stefan Wuttke Dipl.‐Chem. Simona M. Coman Prof. Dr. Gudrun Scholz Priv.‐Doz. Dr. Holm Kirmse Dr. Alexandré Vimont Dr. Maro Daturi Prof. Dr. Sven L. M. Schroeder Dr. Erhard Kemnitz Prof. Dr. 《Chemistry (Weinheim an der Bergstrasse, Germany)》2008,14(36):11488-11499
Novel magnesium fluorides have been prepared by a new fluorolytic sol–gel synthesis for fluoride materials based on aqueous HF. By changing the amount of water at constant stoichiometric amount of HF, it is possible to tune the surface acidity of the resulting partly hydroxylated magnesium fluorides. These materials possess medium‐strength Lewis acid sites and, by increasing the amount of water, Brønsted acid sites as well. Magnesium hydroxyl groups normally have a basic nature and only with this new synthetic route is it possible to create Brønsted acidic magnesium hydroxyl groups. XRD, MAS NMR, TEM, thermal analysis, and elemental analysis have been applied to study the structure, composition, and thermal behaviour of the bulk materials. XPS measurements, FTIR with probe molecules, and the determination of N2/Ar adsorption–desorption isotherms have been carried out to investigate the surface properties. Furthermore, activity data have indicated that the tuning of the acidic properties makes these materials versatile catalysts for different classes of reactions, such as the synthesis of (all‐rac)‐[α]‐tocopherol through the condensation of 2,3,6‐trimethylhydroquinone (TMHQ) with isophytol (IP). 相似文献
4.
Ran Du Jan‐Ole Joswig Ren Hübner Lin Zhou Wei Wei Yue Hu Alexander Eychmüller 《Angewandte Chemie (International ed. in English)》2020,59(21):8293-8300
Noble‐metal aerogels (NMAs) have drawn increasing attention because of their self‐supported conductive networks, high surface areas, and numerous optically/catalytically active sites, enabling their impressive performance in diverse fields. However, the fabrication methods suffer from tedious procedures, long preparation times, unavoidable impurities, and uncontrolled multiscale structures, discouraging their developments. By utilizing the self‐healing properties of noble‐metal aggregates, the freezing‐promoted salting‐out behavior, and the ice‐templating effect, a freeze–thaw method is crafted that is capable of preparing various hierarchically structured noble‐metal gels within one day without extra additives. In light of their cleanliness, the multi‐scale structures, and combined catalytic/optical properties, the electrocatalytic and photoelectrocatalytic performance of NMAs are demonstrated, which surpasses that of commercial noble‐metal catalysts. 相似文献
5.
6.
Dr. Jiayi Zhu Dr. Xi Yang Dr. Zhibing Fu Prof. Junhui He Prof. Chaoyang Wang Prof. Weidong Wu Prof. Lin Zhang 《Chemistry (Weinheim an der Bergstrasse, Germany)》2016,22(7):2515-2524
A new, ultralight, superhigh surface area, multifunctional aerogel, which is macroassembled from sandwich‐like, hierarchical, porous carbon/graphene nanosheets, is described. The multifunctional aerogel was characterized by means of XRD, SEM, TEM, Raman spectroscopy, and UV/Vis absorption spectroscopy. The multifunctional aerogel had an ultralow density of 8 mg cm?3 and a superhigh surface area of 2650 m2 g?1. The multifunctional aerogel was thermal stability and compressible. Meanwhile, the multifunctional aerogel exhibited high capacity for the adsorption of oils and organic solvents, unexpectedly high hydrogen adsorption and good electrochemical performance. 相似文献
7.
Highly luminescent SiO2 particles impregnated with CdTe nanocrystals (NCs) are prepared by a sol–gel procedure. Partial ligand exchange from thioglycolic acid to 3‐mercaptopropyltrimethoxysilane (MPS) on the NCs enables retention of the initial photoluminescence (PL) efficiency of the NCs in water, while the simultaneous addition of a poor solvent (ethanol) results in regulated assembly of the NCs through condensation of hydrolyzed MPS. The SiO2 particles thus prepared have, for example, a diameter of 16 nm and contain three NCs each. The PL efficiency of these particles is 40 %, while the initial efficiency is 46 % in a colloidal solution. The redshift and narrowed spectral width in PL observed after impregnation indicate that the concentration of NCs in these nearly reaches the ultimate value (on the order of 1021 particles per liter). The porosity of these particles is investigated by means of N2 adsorption–desorption isotherms. Due to the SiO2 shell, these particles have higher stability in phosphate‐buffered saline buffer solution than the initial NCs. Their potential use for labeling in bio‐applications is investigated by conjugating biotinylated immunoglobulin G to them by using streptavidin maleimide as linker. Successful conjugation is confirmed by electrophoresis in agarose gel. This preparation method is an important step towards fabricating intensely emitting biocompatible SiO2 particles impregnated with semiconductor NCs. 相似文献
8.
Highly effective sulfated zirconia nanocatalysts grown out of colloidal silica at high temperature 总被引:1,自引:0,他引:1
Zhu G Wang C Zhang Y Guo N Zhao Y Wang R Qiu S Wei Y Baughman RH 《Chemistry (Weinheim an der Bergstrasse, Germany)》2004,10(19):4750-4754
A large surface-to-volume ratio is a prerequisite for highly effective catalysts. Making catalysts in the form of nanoparticles provides a good way to achieve the aim. However, agglomeration of nanoparticles during the preparation and utilization of nanocatalysts remains a formidable problem. Here, we present a novel approach in which nano units of catalysts are formed in the matrix of a colloidal carrier, with assistance of a cross-linking agent, and then grow out of the carrier upon calcination at high temperature. This ensures that the catalysts not only do not agglomerate, but also have a low cost and high catalytic efficiency due to the large surface-to-volume ratio and the absence of carbon deposition. The technique is demonstrated by the successful preparation of a binary nanocatalyst that consists of a silica nanoparticle core and a sulfated zirconia (SZ) nanocrystal shell (JML-1). The synthesis was achieved by converting sulfated zirconia (SZ) and silica solutions into a composite gel by means of sol-gel processing in the presence of triethoxysilane as the cross-linking agent, followed by heating at 50 degrees C and calcining at 550 degrees C. Relative to other catalysts, such as pure SZ, non-nanodispersed SZ over silica (SZ/SiO2), and zeolites Y, Beta, and ZSM-5, JML-1 exhibits superior catalytic activity in many reactions. For example, the activity of JML-1 in the production of gasoline by alkylation of 1-butene with isobutene remained at 95% or higher after 20 h of reaction and was over 90% after being regenerated five times. In sharp contrast, SZ and SZ/SiO2 give a high activity only for 2 h and the initial activity of zeolites Beta and ZSM-5 are about 88 and 60%, respectively. These findings demonstrate that non-agglomerated nanoparticles anchored onto a carrier surface can be prepared and the technique provides a versatile route to new highly effective nanocatalyst systems. 相似文献
9.
Mesoporous RuO2–TiO2 nanocomposites at different RuO2 concentrations (0–10 wt %) are prepared through a simple one‐step sol–gel reaction of tetrabutyl orthotitanate with ruthenium(III) acetylacetonate in the presence of an F127 triblock copolymer as structure‐directing agent. The thus‐formed RuO2–TiO2 network gels are calcined at 450 °C for 4 h leading to mesoporous RuO2–TiO2 nanocomposites. The photocatalytic CH3OH oxidation to HCHO is chosen as the test reaction to examine the photocatalytic activity of the mesoporous RuO2–TiO2 nanocomposites under UV and visible light. The photooxidation of CH3OH is substantially affected by the loading amount and the degree of dispersion of RuO2 particles onto the TiO2, which indicates the exclusive effect of the RuO2 nanoparticles on this photocatalytic reaction under visible light. The measured photonic efficiency ξ=0.53 % of 0.5 wt % RuO2–TiO2 nanocomposite for CH3OH oxidation is maximal and the further increase of RuO2 loading up to 10 wt % gradually decreases this value. The cause of the visible‐light photocatalytic behavior is the incorporation of small amounts of Ru4+ into the anatase lattice. On the other hand, under UV light, undoped TiO2 shows a very good photonic efficiency, which is more than three times that for commercial photocatalyst, P‐25 (Evonik–Degussa); however, addition of RuO2 suppresses the photonic efficiency of TiO2. The proposed reaction mechanism based on the observed behavior of RuO2–TiO2 photocatalysts under UV and visible light is explored. 相似文献
10.
Steven J. Craythorne Kris Anderson Dr. Fabio Lorenzini Christina McCausland Emily F. Smith Peter Licence Dr. Andrew C. Marr Dr. Patricia C. Marr Dr. 《Chemistry (Weinheim an der Bergstrasse, Germany)》2009,15(29):7094-7100
Molecular hydrogenation catalysts have been co‐entrapped with the ionic liquid [Bmim]NTf2 inside a silica matrix by a sol–gel method. These catalytic ionogels have been compared to simple catalyst‐doped glasses, the parent homogeneous catalysts, commercial heterogeneous catalysts, and Rh‐doped mesoporous silica. The most active ionogel has been characterised by transmission electron microscopy, X‐ray photoelectron spectroscopy, and solid state NMR before and after catalysis. The ionogel catalysts were found to be remarkably active, recyclable and resistant to chemical change. 相似文献
11.
Dr. Amàlia Monge‐Marcet Dr. Xavier Cattoën Dr. Philippe Dieudonné Prof. Dr. Roser Pleixats Dr. Michel Wong Chi Man 《化学:亚洲杂志》2013,8(9):2235-2241
The transformation by hydrolysis/condensation of four new mesityl‐(bis or tris)imidazolium‐based alkoxysilane precursors into their corresponding bridged silsesquioxanes has been investigated. These precursors feature urea groups and either short or long alkylene chains, which are known to favor self‐assembly. The most regular nanostructures were obtained by a combination of the tripodal precursors with C10H20 alkylene chains, as shown by powder X‐ray diffraction (PXRD) analysis, independent of the reaction conditions. 相似文献
12.
Function‐Led Design of Aerogels: Self‐Assembly of Alloyed PdNi Hollow Nanospheres for Efficient Electrocatalysis 下载免费PDF全文
Bin Cai Dr. Dan Wen Dr. Wei Liu Dr. Anne‐Kristin Herrmann Albrecht Benad Prof. Alexander Eychmüller 《Angewandte Chemie (International ed. in English)》2015,54(44):13101-13105
One plausible approach to endow aerogels with specific properties while preserving their other attributes is to fine‐tune the building blocks. However, the preparation of metallic aerogels with designated properties, for example catalytically beneficial morphologies and transition‐metal doping, still remains a challenge. Here, we report on the first aerogel electrocatalyst composed entirely of alloyed PdNi hollow nanospheres (HNSs) with controllable chemical composition and shell thickness. The combination of transition‐metal doping, hollow building blocks, and the three‐dimensional network structure make the PdNi HNS aerogels promising electrocatalysts for ethanol oxidation. The mass activity of the Pd83Ni17 HNS aerogel is 5.6‐fold higher than that of the commercial Pd/C catalyst. This work expands the exploitation of the electrocatalysis properties of aerogels through the morphology and composition control of its building blocks. 相似文献
13.
Control of Chiral Nanostructures by Self‐Assembly of Designed Amphiphilic Peptides and Silica Biomineralization 下载免费PDF全文
Zhehao Huang Dr. Yuan Yao Dr. Lu Han Prof. Shunai Che 《Chemistry (Weinheim an der Bergstrasse, Germany)》2014,20(51):17068-17076
Peptides, the fundamental building units of biological systems, are chiral in molecular scale as well as in spatial conformation. Shells are exquisite examples of well‐defined chiral structures produced by natural biomineralization. However, the fundamental mechanism of chirality expressed in biological organisms remains unclear. Here, we present a system that mimics natural biomineralization and produces enantiopure chiral inorganic materials with controllable helicity. By tuning the hydrophilicity of the amphiphilic peptides, the chiral morphologies and mesostructures can be changed. With decreasing hydrophilicity of the amphiphilic peptides, we observed that the nanostructures changed from twisted nanofibers with a hexagonal mesostructure to twisted nanoribbons with a lamellar mesostructure, and the extent of the helicity decreased. Defining the mechanism of chiral inorganic materials formed from peptides by noncovalent interactions can improve strategies toward the bottom‐up synthesis of nanomaterials as well as in the field of bioengineering. 相似文献
14.
15.
16.
Dual‐Cargo Selectively Controlled Release Based on a pH‐Responsive Mesoporous Silica System 下载免费PDF全文
Dr. Wanyuan Gui Dr. Wenqian Wang Dr. Xiangyu Jiao Dr. Lifeng Chen Prof. Yongqiang Wen Prof. Xueji Zhang 《Chemphyschem》2015,16(3):607-613
A pH‐controlled delivery system based on mesoporous silica nanoparticles (MSNs) was constructed for dual‐cargo selective release. To achieve a better controlled‐release effect, a modified sol–gel method was employed to obtain MSNs with tunable particle and pore sizes. The systems selectively released different kinds of cargo when stimulated by different pH values. At the lower pH value (pH 2.0) only one kind of cargo was released from the MSNs, whereas at a higher pH value (pH 7.0) only the other kind of cargo was released from the MSNs. The multi‐cargo delivery system has brought the concept of selective release to new advances in the field of functional nanodevices and allows more accurate and controllable delivery of specific cargoes, which is expected to have promising applications in nanomedicine. 相似文献
17.
The structural processing of metal–organic frameworks (MOFs) over multiple length scales is critical for their successful use as adsorbents in a variety of emerging applications. Although significant advances in molecular‐scale design have provided strategies to boost the adsorptive capacities of MOFs, relatively little attention has been directed toward understanding the influence of higher‐order structuralization on the material performance. Herein, we present the main strategies that are currently available for the structural processing of MOFs and discuss the influence these processes can impart on the adsorptive properties of the materials. In all, this intriguing area of research is expected to provide significant opportunities to enhance the properties of MOFs further, which will ultimately aid in their optimization in the context of specific real‐world applications. 相似文献
18.
Artur Vashurin Yury Marfin Ilya Tarasyuk Ilya Kuzmin Serafima Znoyko Aleksandr Goncharenko Evgeny Rumyantsev 《应用有机金属化学》2018,32(9)
Silica nanoparticles were obtained during the work according to two different sol–gel methods. In first one Schtrober's technique and series of cobalt phthalocyanine metal complexes varying in peripheral substituents were used. Second method was performed using the same complexes but differed in applying surface‐active substance (SAS) and two precursors – tetraethoxysilane (TEOS) and aminopropyltrimethoxysilane (APTMOS). All obtained hybrid materials were analyzed via SEM, the size of single particle was studied, which in all cases was about 200 nm. In order to investigate hybrid's characteristics laser diffraction and liquid nitrogen adsorption methods were applied. Distinction in pore's specific volume of differently‐obtained nanoparticles was found. Catalytic activity of all obtained materials were tested in conversion of N,N‐diethylcarbamodithiolate to thiuram E. Effect of peripherally substituted phthalocyanines and morphology of matrixes were manifested on catalytic activity of the hybrids. 相似文献
19.
20.
Dr. Abraham Chemtob Dr. Lingli Ni Prof. Céline Croutxé‐Barghorn Prof. Bruno Boury 《Chemistry (Weinheim an der Bergstrasse, Germany)》2014,20(7):1790-1806
Despite considerable achievements over the last two decades, nonporous organic–inorganic hybrid materials are mostly amorphous, especially in the absence of solvothermal processes. The organosilane self‐assembly approach is one of the few opportunities for creating a regular assembly of organic and inorganic moieties. Additionally, well‐established organosilicon chemistry enables the introduction of numerous organic functionalities. The synthesis of periodically ordered hybrids relies on mono‐, bis‐, or multisilylated organosilane building blocks self‐assembling into hybrid mesostructures or superstructures, subsequently cross‐linked by siloxane Si‐O‐Si condensation. The general synthesis procedure is template‐free and one‐step. However, three concurrent processes underlie the generation of self‐organized hybrid networks: thermodynamics of amphiphilic aggregation, dynamic self‐assembly, and kinetically controlled sol–gel chemistry. Hence, the set of experimental conditions and the precursor structure are of paramount importance in achieving long‐range order. Since the first developments in the mid‐1990s, the subject has seen considerable progress leading to many innovative advanced nanomaterials providing promising applications in membranes, pollutant remediation, catalysis, conductive coatings, and optoelectronics. This work reviews, comprehensively, the primary evolution of this expanding field of research. 相似文献