共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Small‐Molecule Recognition for Controlling Molecular Motion in Hydrogen‐Bond‐Assembled Rotaxanes 下载免费PDF全文
Dr. Alberto Martinez‐Cuezva Dr. Jose Berna Dr. Raul‐Angel Orenes Dr. Aurelia Pastor Prof. Dr. Mateo Alajarin 《Angewandte Chemie (International ed. in English)》2014,53(26):6762-6767
Di(acylamino)pyridines successfully template the formation of hydrogen‐bonded rotaxanes through five‐component clipping reactions. A solid‐state study showed the participation of the pyridine nitrogen atom in the stabilization of the mechanical bond between the thread and the benzylic amide macrocycle. The addition of external complementary binders to a series of interlocked bis(2,6‐di(acylamino)pyridines) promoted restraint of the back and forward ring motion. The original translation can be restored through a competitive recognition event by the addition of a preorganized bis(di(acylamino)pyridine) that forms stronger ADA–DAD complexes with the external binders. 相似文献
4.
Dr. Momar Toure Prof. Craig M. Crews 《Angewandte Chemie (International ed. in English)》2016,55(6):1966-1973
The current inhibitor‐based approach to therapeutics has inherent limitations owing to its occupancy‐based model: 1) there is a need to maintain high systemic exposure to ensure sufficient in vivo inhibition, 2) high in vivo concentrations bring potential for off‐target side effects, and 3) there is a need to bind to an active site, thus limiting the drug target space. As an alternative, induced protein degradation lacks these limitations. Based on an event‐driven model, this approach offers a novel catalytic mechanism to irreversibly inhibit protein function by targeting protein destruction through recruitment to the cellular quality control machinery. Prior protein degrading strategies have lacked therapeutic potential. However, recent reports of small‐molecule‐based proteolysis‐targeting chimeras (PROTACs) have demonstrated that this technology can effectively decrease the cellular levels of several protein classes. 相似文献
5.
Membrane receptors control fundamental cellular processes. Binding of a specific ligand to a receptor initiates communication through the membrane and activation of signaling cascades. This activation process often leads to a spatial rearrangement of receptors in the membrane at the molecular level. Single‐molecule techniques contributed significantly to the understanding of receptor organization and rearrangement in membranes. Here, we review four prominent single‐molecule techniques that have been applied to membrane receptors, namely, stepwise photobleaching, Förster resonance energy transfer, sub‐diffraction localization microscopy and co‐tracking. We discuss the requirements, benefits and limitations of each technique, discuss target labeling, present a selection of applications and results and compare the different methodologies. 相似文献
6.
Jiajun Wang Rmi Terrasse Jayesh Arun Bafna Lorraine Benier Mathias Winterhalter 《Angewandte Chemie (International ed. in English)》2020,59(22):8517-8521
Multi‐drug resistance in Gram‐negative bacteria is often associated with low permeability of the outer membrane. To investigate the role of membrane channels in the uptake of antibiotics, we present an approach using fusion of native outer membrane vesicles (OMVs) into a planar lipid bilayer, allowing characterization of membrane protein channels in their native environment. Two major membrane channels from E. coli, OmpF and OmpC, were overexpressed from the host and the corresponding OMVs were collected. Each OMV fusion surprisingly revealed only single or few channel activities. The asymmetry of the OMVs translates after fusion into the lipid membrane with the lipopolysaccharides (LPS) dominantly present at the side of OMV addition. Compared to the conventional reconstitution method, the channels fused from OMVs containing LPS have similar conductance but a much broader distribution and significantly lower permeation. We suggest using outer membrane vesicles for functional and structural studies of membrane channels in the native membrane. 相似文献
7.
8.
9.
Markus Leimbacher Dr. Yixin Zhang Dr. Luca Mannocci Michael Stravs Dr. Tim Geppert Dr. Jörg Scheuermann Prof. Gisbert Schneider Prof. Dario Neri 《Chemistry (Weinheim an der Bergstrasse, Germany)》2012,18(25):7729-7737
Libraries of chemical compounds individually coupled to encoding DNA tags (DNA‐encoded chemical libraries) hold promise to facilitate exceptionally efficient ligand discovery. We constructed a high‐quality DNA‐encoded chemical library comprising 30 000 drug‐like compounds; this was screened in 170 different affinity capture experiments. High‐throughput sequencing allowed the evaluation of 120 million DNA codes for a systematic analysis of selection strategies and statistically robust identification of binding molecules. Selections performed against the tumor‐associated antigen carbonic anhydrase IX (CA IX) and the pro‐inflammatory cytokine interleukin‐2 (IL‐2) yielded potent inhibitors with exquisite target specificity. The binding mode of the revealed pharmacophore against IL‐2 was confirmed by molecular docking. Our findings suggest that DNA‐encoded chemical libraries allow the facile identification of drug‐like ligands principally to any protein of choice, including molecules capable of disrupting high‐affinity protein–protein interactions. 相似文献
10.
Dr. Kai Xiao Kai Wu Lu Chen Dr. Xiang‐Yu Kong Prof. Yuqi Zhang Prof. Liping Wen Prof. Lei Jiang 《Angewandte Chemie (International ed. in English)》2018,57(1):151-155
The controllable molecule transport is crucial to realize many highly valuable applications both in vivo and in vitro. Nanoporous membranes, with nanoscopic pores, high porosity, uniform pore dimensions, and controllable surface chemical properties, hold tremendous potential to achieve this function. Herein, we report a nano‐gating system for on‐demand molecule transport based on a peptide‐gated nanoporous membrane. Acting as gatekeeper, the peptides introduced to the nanoporous membrane provide an opportunity to realize on‐demand on–off states via reversible conformational switching of the peptides. This nano‐gating system offers sustained release and can be used as a sophisticated molecule transport platform for localized drug delivery with a feedback function. 相似文献
11.
12.
《Angewandte Chemie (International ed. in English)》2017,56(49):15742-15745
Phosphorylation and dephosphorylation of peptides by kinases and phosphatases is essential for signal transduction in biological systems, and many diseases involve abnormal activities of these enzymes. Herein, we introduce amphiphilic calixarenes as key components for supramolecular, phosphorylation‐responsive membrane transport systems. Dye‐efflux experiments with liposomes demonstrated that calixarenes are highly active counterion activators for established cell‐penetrating peptides, with EC50 values in the low nanomolar range. We have now found that they can even activate membrane transport of short peptide substrates for kinases involved in signal transduction, whereas the respective phosphorylated products are much less efficiently transported. This allows regulation of membrane transport activity by protein kinase A (PKA) and protein kinase C (PKC), as well as monitoring of their activity in a label‐free kinase assay. 相似文献
13.
14.
Lukas Sušac Dr. Casey O'Connor Prof. Dr. Raymond C. Stevens Prof. Dr. Kurt Wüthrich 《Angewandte Chemie (International ed. in English)》2015,54(50):15246-15249
We present in‐membrane chemical modification (IMCM) for obtaining selective chromophore labeling of intracellular surface cysteines in G‐protein‐coupled receptors (GPCRs) with minimal mutagenesis. This method takes advantage of the natural protection of most cysteines by the membrane environment. Practical use of IMCM is illustrated with the site‐specific introduction of chromophores for NMR and fluorescence spectroscopy in the human κ‐opioid receptor (KOR) and the human A2A adenosine receptor (A2AAR). IMCM is applicable to a wide range of in vitro studies of GPCRs, including single‐molecule spectroscopy, and is a promising platform for in‐cell spectroscopy experiments. 相似文献
15.
Jani Reddy Bolla Robin A. Corey Cagla Sahin Joseph Gault Alissa Hummer Jonathan T. S. Hopper David P. Lane David Drew Timothy M. Allison Phillip J. Stansfeld Carol V. Robinson Michael Landreh 《Angewandte Chemie (International ed. in English)》2020,59(9):3523-3528
Membrane proteins engage in a variety of contacts with their surrounding lipids, but distinguishing between specifically bound lipids, and non‐specific, annular interactions is a challenging problem. Applying native mass spectrometry to three membrane protein complexes with different lipid‐binding properties, we explore the ability of detergents to compete with lipids bound in different environments. We show that lipids in annular positions on the presenilin homologue protease are subject to constant exchange with detergent. By contrast, detergent‐resistant lipids bound at the dimer interface in the leucine transporter show decreased koff rates in molecular dynamics simulations. Turning to the lipid flippase MurJ, we find that addition of the natural substrate lipid‐II results in the formation of a 1:1 protein–lipid complex, where the lipid cannot be displaced by detergent from the highly protected active site. In summary, we distinguish annular from non‐annular lipids based on their exchange rates in solution. 相似文献
16.
Kathrin Brmmel Sarah Maskri Ivan Maisuls Christian Paul Konken Marius Rieke Zoltan Peth Cristian A. Strassert Oliver Koch Albrecht Schwab Bernhard Wünsch 《Angewandte Chemie (International ed. in English)》2020,59(21):8277-8284
Small‐molecule probes for the in vitro imaging of KCa3.1 channel‐expressing cells were developed. Senicapoc, showing high affinity and selectivity for the KCa3.1 channels, was chosen as the targeting component. BODIPY dyes 15 – 20 were synthesized and connected by a CuI‐catalyzed azide–alkyne [3+2]cycloaddition with propargyl ether senicapoc derivative 8 , yielding fluorescently labeled ligands 21 – 26 . The dimethylpyrrole‐based imaging probes 25 and 26 allow staining of KCa3.1 channels in NSCLC cells. The specificity was shown by removing the punctate staining pattern by pre‐incubation with senicapoc. The density of KCa3.1 channels detected with 25 and by immunostaining was identical. The punctate structure of the labeled channels could also be observed in living cells. Molecular modeling showed binding of the senicapoc‐targeting component towards the binding site within the ion channel and orientation of the linker with the dye along the inner surface of the ion channel. 相似文献
17.
Naoki Kanoh Aya Asami Makoto Kawatani Kaori Honda Saori Kumashiro Hiroshi Takayama Siro Simizu Tomoyuki Amemiya Yasumitsu Kondoh Satoru Hatakeyama Keiko Tsuganezawa Rei Utata Akiko Tanaka Shigeyuki Yokoyama Hideo Tashiro Hiroyuki Osada 《化学:亚洲杂志》2006,1(6):789-797
We have developed a unique photo‐cross‐linking approach for immobilizing a variety of small molecules in a functional‐group‐independent manner. Our approach depends on the reactivity of the carbene species generated from trifluoromethylaryldiazirine upon UV irradiation. It was demonstrated in model experiments that the photogenerated carbenes were able to react with every small molecule tested, and they produced multiple conjugates in most cases. It was also found in on‐array immobilization experiments that various small molecules were immobilized, and the immobilized small molecules retained their ability to interact with their binding proteins. With this approach, photo‐cross‐linked microarrays of about 2000 natural products and drugs were constructed. This photo‐cross‐linked microarray format was found to be useful not merely for ligand screening but also to study the structure–activity relationship, that is, the relationship between the structural motif (or pharmacophore) found in small molecules and its binding affinity toward a protein, by taking advantage of the nonselective nature of the photo‐cross‐linking process. 相似文献
18.
19.
Discovery of Cell‐Permeable Inhibitors That Target the BRCT Domain of BRCA1 Protein by Using a Small‐Molecule Microarray 下载免费PDF全文
Zhenkun Na Sijun Pan Dr. Mahesh Uttamchandani Prof. Dr. Shao Q. Yao 《Angewandte Chemie (International ed. in English)》2014,53(32):8421-8426
BRCTs are phosphoserine‐binding domains found in proteins involved in DNA repair, DNA damage response and cell cycle regulation. BRCA1 is a BRCT domain‐containing, tumor‐suppressing protein expressed in the cells of breast and other human tissues. Mutations in BRCA1 have been found in ca. 50 % of hereditary breast cancers. Cell‐permeable, small‐molecule BRCA1 inhibitors are promising anticancer agents, but are not available currently. Herein, with the assist of microarray‐based platforms, we have discovered the first cell‐permeable protein–protein interaction (PPI) inhibitors against BRCA1. By targeting the (BRCT)2 domain, we showed compound 15 a and its prodrug 15 b inhibited BRCA1 activities in tumor cells, sensitized these cells to ionizing radiation‐induced apoptosis, and showed synergistic inhibitory effect when used in combination with Olaparib (a small‐molecule inhibitor of poly‐ADP‐ribose polymerase) and Etoposide (a small‐molecule inhibitor of topoisomerase II). Unlike previously reported peptide‐based PPI inhibitors of BRCA1, our compounds are small‐molecule‐like and could be directly administered to tumor cells, thus making them useful for future studies of BRCA1/PARP‐related pathways in DNA damage and repair response, and in cancer therapy. 相似文献