首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
There are many efficient biological motors in Nature that perform complex functions by converting chemical energy into mechanical motion. Inspired by this, the development of their synthetic counterparts has aroused tremendous research interest in the past decade. Among these man‐made motor systems, the fuel‐free (or light, magnet, ultrasound, or electric field driven) motors are advantageous in terms of controllability, lifespan, and biocompatibility concerning bioapplications, when compared with their chemically powered counterparts. Therefore, this review will highlight the latest biomedical applications in the versatile field of externally propelled micro‐/nanomotors, as well as elucidating their driving mechanisms. A perspective into the future of the micro‐/nanomotors field and a discussion of the challenges we need to face along the road towards practical clinical translation of external‐field‐propelled micro‐/nanomotors will be provided.  相似文献   

2.
As we progress towards employing self‐propelled micro‐/nanomotors in envisioned applications such as cargo delivery, environmental remediation, and therapeutic treatments, precise control of the micro‐/nanomotors direction and their speed is essential. In this Review, major emerging approaches utilized for the motion control of micro‐/nanomotors have been discussed, together with the lastest publications describing these approaches. Future studies could incorporate investigations on micro‐/nanomotors motion control in a real‐world environment in which matrix complexity might disrupt successful manipulation of these small‐scale devices.  相似文献   

3.
Chemically powered micro‐ and nanomotors are small devices that are self‐propelled by catalytic reactions in fluids. Taking inspiration from biomotors, scientists are aiming to find the best architecture for self‐propulsion, understand the mechanisms of motion, and develop accurate control over the motion. Remotely guided nanomotors can transport cargo to desired targets, drill into biomaterials, sense their environment, mix or pump fluids, and clean polluted water. This Review summarizes the major advances in the growing field of catalytic nanomotors, which started ten years ago.  相似文献   

4.
Surface enhanced Raman spectroscopy (SERS) is a powerful optical sensing technique that can detect analytes of extremely low concentrations. However, the presence of enough SERS probes in the detection area and a close contact between analytes and SERS probes are critical for efficient acquisition of a SERS signal. Presented here is a light‐powered micro/nanomotor (MNM) that can serve as an active SERS probe. The matchlike AgNW@SiO2 core–shell structure of the nanomotors work as SERS probes based on the shell‐isolated enhanced Raman mechanism. The AgCl tail serves as photocatalytic nanoengine, providing a self‐propulsion force by light‐induced self‐diffusiophoresis. The phototactic behavior was utilized to achieve enrichment of the nanomotor‐based SERS probes for on‐demand biochemical sensing. The results demonstrate the possibility of using photocatalytic nanomotors as active SERS probes for remote, light‐controlled, and smart biochemical sensing on the micro/nanoscale.  相似文献   

5.
The engineering of self‐propelled micro‐/nanomotors (MNMs) with continuously variable speeds, akin to macroscopic automobiles equipped with a continuously variable transmission, is still a huge challenge. Herein, after grafting with salt‐responsive poly[2‐(methacryloyloxy)ethyltrimethylammonium chloride] (PMETAC) brushes, bubble‐propelled Janus microcapsule motors with polyelectrolyte multilayers exhibited adjustable speeds when the type and concentration of the counterion was changed. Reversible switching between low‐ and high‐speed states was achieved by modulating the PMETAC brushes between hydrophobic and hydrophilic configurations by ion exchange with ClO4? and polyphosphate anions. This continuously variable regulation enabled control of the speed in an accurate and predictable manner and an autonomous response to the local chemical environment. This study suggests that the integration of polymer brushes with precisely adjustable responsiveness offers a promising route for motion control of smart MNMs that act like their counterparts in living systems.  相似文献   

6.
Catalytic tubular micro/nanomachines convert chemical energy from a surrounding aqueous fuel solution into mechanical energy to generate autonomous movements, propelled by the oxygen bubbles decomposed by hydrogen peroxide and expelled from the microtubular cavity. With the development of nanotechnology, micro/nanomotors have attracted more and more interest due to their numerous potential for in vivo and in vitro applications. Here, highly efficient chemical catalytic microtubular motors were fabricated via 3D laser lithography and their motion behavior under the action of driving force in fluids was demonstrated. The frequency of catalytically‐generated bubbles ejection was influenced by the geometrical shape of the micro/nanomotor and surrounding chemical fuel environment, resulting in the variation in motion speed. The micro/nanomotors generated with a rocket‐like shape displayed a more active motion compared with that of a single tubular micro/nanomotor, providing a wider range of practical micro‐/nanoscale applications in the future.  相似文献   

7.
Controlling the motion of artificial self‐propelled micro‐ and nanomotors independent of the fuel concentration is still a great challenge. Here we describe the first report of speed manipulation of supramolecular nanomotors via blue light‐responsive valves, which can regulate the access of hydrogen peroxide fuel into the motors. Light‐sensitive polymeric nanomotors are built up via the self‐assembly of functional block copolymers, followed by bowl‐shaped stomatocyte formation and incorporation of platinum nanoparticles. Subsequent addition of β‐cyclodextrin (β‐CD) leads to the formation of inclusion complexes with the trans‐isomers of the azobenzene derivatives grafted from the surfaces of the stomatocytes. β‐CDs attachment decreases the diffusion rate of hydrogen peroxide into the cavities of the motors because of partly blocking of the openings of the stomatocyte. This results in a lowering of the speed of the nanomotors. Upon blue light irradiation, the trans‐azobenzene moieties isomerize to the cis‐form, which lead to the detachment of the β‐CDs due to their inability to form complexes with the cis‐isomer. As a result, the speed of the nanomotors increases accordingly. Such a conformational change provides us with the unique possibility to control the speed of the supramolecular nanomotor via light‐responsive host–guest complexation. We envision that such artificial responsive nano‐systems with controlled motion could have potential applications in drug delivery.  相似文献   

8.
We report a near‐infrared (NIR) light‐powered Janus mesoporous silica nanomotor (JMSNM) with macrophage cell membrane (MPCM) cloaking that can actively seek cancer cells and thermomechanically percolate cell membrane. Upon exposure to NIR light, a heat gradient across the Janus boundary of the JMSNMs is generated by the photothermal effect of the Au half‐shells, resulting in a self‐thermophoretic force that propels the JMSNMs. In biological medium, the MPCM camouflaging can not only prevent dissociative biological blocks from adhering to JMSNMs but also improve the seeking sensitivity of the nanomotors by specifically recognizing cancer cells. The biofriendly propulsion and recognition capability enable JMSNMs to achieve the active seeking and bind to the membrane of cancer cells. Subsequent illumination with NIR then triggers the photothermal effect of MPCM@JMSNMs to thermomechanically perforate the cytomembranes for guest molecular injection. This approach integrates the functions of active seeking, cytomembranes perforating, and thermomechanical therapy in nanomotors, which may pave the way to apply self‐propelled motors in biomedical fields.  相似文献   

9.
Helical micro/nanomotors (MNMs) can be propelled by external fields to swim through highly viscous fluids like complex biological environments, which promises miniaturized robotic tools to perform assigned tasks at small scales. However, the catalytic propulsion method, most widely adopted to drive MNMs, is seldom studied to actuate helical MNMs. Herein, we report catalytic helical carbon MNMs (CHCM) by sputtering Pt onto helical carbon nano‐coils (HCNC) that are in bulk prepared by a thermal chemical vapor deposition method. The Pt‐triggered H2O2 decomposition can drive the MNMs by an electrokinetic mechanism. The MNMs demonstrate versatile motion behaviors including both directional propulsion and rotation depending on the turn number of the carbon helix. Besides, due to the ease of surface functionalization on carbon and other properties such as biocompatibility and photothermal effect, the helical carbon MNMs promise multifunctional applications for biomedical or environmental applications.  相似文献   

10.
The synthesis of an innovative self‐propelled Janus nanomotor with a diameter of about 75 nm that can be used as a drug carrier is described. The Janus nanomotor is based on mesoporous silica nanoparticles (MSNs) with chromium/platinum metallic caps and propelled by decomposing hydrogen peroxide to generate oxygen as a driving force with speeds up to 20.2 μm s?1 (about 267 body lengths per second). The diffusion coefficient (D) of nanomotors with different H2O2 concentrations is calculated by tracking the movement of individual particles recorded by means of a self‐assembled fluorescence microscope and is significantly larger than free Brownian motion. The traction of a single Janus MSN nanomotor is estimated to be about 13.47×10?15 N. Finally, intracellular localization and drug release in vitro shows that the amount of Janus MSN nanomotors entering the cells is more than MSNs with same culture time and particle concentrations, meanwhile anticancer drug doxorubicin hydrochloride loaded in Janus MSNs can be slowly released by biodegradation of lipid bilayers in cells.  相似文献   

11.
微纳米马达是能将环境中的化学反应或外场(光、声、磁场、电场等)提供的能量转化为推进力,从而产生自主运动的微纳米级人造机器。由于具有集群效应、比表面积大、运动可控等多种特征,微纳米马达在环境修复、药物递送、微纳手术、抗感染、重金属清除等诸多领域受到关注。在一定条件下,微纳米马达能主动运动并聚集到病灶,将治疗或诊断药物递送到靶部位,有望在人体复杂环境中进行精细化的工作。因此,微纳米马达在疾病预防、诊断、治疗以及预后中具有巨大的发展空间。在此,本综述首先对微纳米马达进行简要介绍,包括其结构设计、驱动方式。其次,详细介绍微纳米马达在不同类型的疾病中的研究进展。最后,提出目前该技术面临的挑战与未来发展方向。  相似文献   

12.
Direct and rapid intracellular delivery of a functional Cas9/sgRNA complex using ultrasound‐powered nanomotors is reported. The Cas9/sgRNA complex is loaded onto the nanomotor surface through a reversible disulfide linkage. A 5 min ultrasound treatment enables the Cas9/sgRNA‐loaded nanomotors to directly penetrate through the plasma membrane of GFP‐expressing B16F10 cells. The Cas9/sgRNA is released inside the cells to achieve highly effective GFP gene knockout. The acoustic Cas9/sgRNA‐loaded nanomotors display more than 80 % GFP knockout within 2 h of cell incubation compared to 30 % knockout using static nanowires. More impressively, the nanomotors enable highly efficient knockout with just 0.6 nm of the Cas9/sgRNA complex. This nanomotor‐based intracellular delivery method thus offers an attractive route to overcome physiological barriers for intracellular delivery of functional proteins and RNAs, thus indicating considerable promise for highly efficient therapeutic applications.  相似文献   

13.
The self‐assembly of nanomotors is important for the production of materials with functional optical, mechanical and conductive properties. Yet, self‐assembly methods are limited by their slow kinetics and limited scale. Here we report a light‐induced method that yields a large‐scale predefined pattern constructed by self‐organization of nanomotors. The propulsion mechanism has been analyzed to create a matched experimental device, and numerical simulations are used to explore the dynamic energy‐conversion processes. We propose a sizable template fabricating method, which paves the way for new possibilities in surface science.  相似文献   

14.
ZnO has long been considered as a model UV‐driven photoanode for photoelectrochemical water splitting, but its performance has been limited by fast charge‐carrier recombination, extremely poor stability in aqueous solution, and slow kinetics of water oxidation. These issues were addressed by applying a strategy of optimization and passivation of hydrothermally grown 1D ZnO nanowire arrays. The length and diameter of bare ZnO nanowires were optimized by varying the growth time and precursor concentration to achieve optimal photoelectrochemical performance. The addition of earth‐abundant cobalt phosphate (Co‐Pi) and nickel borate (Ni‐B) oxygen evolution catalysts onto ZnO nanowires resulted in substantial cathodic shifts in onset potential to as low as about 0.3 V versus the reversible hydrogen electrode (RHE) for Ni‐B/ZnO, for which a maximum photocurrent density of 1.1 mA cm?2 at 0.9 V (vs. RHE) with applied bias photon‐to‐current efficiency of 0.4 % and an unprecedented near‐unity incident photon‐to‐current efficiency at 370 nm. In addition the potential required for saturated photocurrent was dramatically reduced from 1.6 to 0.9 V versus RHE. Furthermore, the stability of these ZnO nanowires was significantly enhanced by using Ni‐B compared to Co‐Pi due to its superior chemical robustness, and it thus has additional functionality as a stable protecting layer on the ZnO surface. These remarkable enhancements in both photocatalytic activity and stability directly address the current severe limitations in the use of ZnO‐based photoelectrodes for water‐splitting applications, and can be applied to other photoanodes for efficient solar‐driven fuel synthesis.  相似文献   

15.
Micro‐ and nanomotors and their use for biomedical applications have recently received increased attention. However, most designs use top‐down methods to construct inorganic motors, which are labour‐intensive and not suitable for biomedical use. Herein, we report a high‐throughput design of an asymmetric hydrogel microparticle with autonomous movement by using a microfluidic chip to generate asymmetric, aqueous, two‐phase‐separating droplets consisting of poly(ethylene glycol) diacrylate (PEGDA) and dextran, with the biocatalyst placed in the PEGDA phase. The motor is propelled by enzyme‐mediated decomposition of fuel. The speed of the motors is influenced by the roughness of the PEGDA surface after diffusion of dextran and was tuned by using higher molecular weight dextran. This roughness allows for easier pinning of oxygen bubbles and thus higher speeds of the motors. Pinning of bubbles occurs repeatedly at the same location, thereby resulting in constant circular or linear motion.  相似文献   

16.
Miniaturized autonomous chemo‐electronic swimmers, based on the coupling of spontaneous oxidation and reduction reactions at the two poles of light‐emitting diodes (LEDs), are presented as chemotactic and magnetotactic devices. In homogeneous aqueous media, random motion caused by a bubble‐induced propulsion mechanism is observed. However, in an inhomogeneous environment, the self‐propelled devices exhibit positive chemotactic behavior, propelling themselves along a pH or ionic strength gradient (?pH and ?I, respectively) in order to reach a thermodynamically higher active state. In addition, the intrinsic permanent magnetic moment of the LED allows self‐orientation in the terrestrial magnetic field or following other external magnetic perturbations, which enables a directional motion control coupled with light emission. The interplay between chemotaxis and magnetotaxis allows fine‐tuning of the dynamic behavior of these swimmers.  相似文献   

17.
Polyetheretherketone is attractive for dental and orthopedic applications due to its mechanical attributes close to that of human bone; however, the lack of antibacterial capability and bioactivity of polyetheretherketone has substantially impeded its clinical applications. Here, a dual therapy implant coating is developed on the 3D micro‐/nanoporous sulfonated polyetheretherketone via layer‐by‐layer self‐assembly of Ag ions and Zn ions. Material characterization studies have indicated that nanoparticles consisting of elemental Ag and ZnO are uniformly incorporated on the porous sulfonated polyetheretherketone surface. The antibacterial assays demonstrate that Ag‐decorated sulfonated polyetheretherketone and Ag/ZnO‐codecorated sulfonated polyetheretherketone effectively inhibit the reproduction of Gram‐negative and Gram‐positive bacteria. Owing to the coordination of micro‐/nanoscale topological cues and Zn induction, the Ag/ZnO‐codecorated sulfonated polyetheretherketone substrates are found to enhance biocompatibility (cell viability, spreading, and proliferation), and hasten osteodifferentiation and ‐maturation (alkaline phosphate activity (ALP) production, and osteogenesis‐related genetic expression), compared with the Ag‐decorated sulfonated polyetheretherketone and the ZnO‐decorated sulfonated polyetheretherketone counterparts. The dual therapy Ag/ZnO‐codecorated sulfonated polyetheretherketone has an appealing bacteriostatic performance and osteogenic differentiation potential, showing great potential for dental and orthopedic implants.  相似文献   

18.
CdS quantum dots/C60 tubular micromotors with chemical/multi‐light‐controlled propulsion and “on‐the‐fly” acceleration capabilities are described. In situ growth of CdS quantum dots on the outer fullerene layer imparts this layer with light‐responsive properties in connection to inner Pt, Pd or MnO2 layers. This is the first time that visible light is used to drive bubble‐propelled tubular micromotors. The micromotors exhibit a broad absorption range from 320 to 670 nm and can be wirelessly controlled by modulating light intensity and peroxide concentration. The built‐in accelerating optical system allows for the control of the velocity over the entire UV/Vis light spectra by modulating the catalyst surface chemistry. The light‐responsive properties have been also exploited to accelerate the chemical dealloying and propulsion of micromotors containing a Cu/Pd layer. Such dual operated hybrid micromotors hold considerable promise for designing smart micromachines for on‐demand operations, motion‐based sensing, and enhanced cargo transportation.  相似文献   

19.
In this work, we develop a low‐temperature, facile solution reaction route for the fabrication of quantum‐dot‐sensitized solar cells (QDSSCs) containing Ag2S‐ZnO nanowires (NWs), simultaneously ensuring low manufacturing costs and environmental safety. For comparison, a CdS‐ZnO NW photoanode was also prepared using the layer‐by‐layer growth method. Ultraviolet photoelectron spectroscopy analysis revealed type‐II band alignments for the band structures of both photoanodes which facilitate electron transfer/collection. Compared to CdS‐ZnO QDSSCs, Ag2S‐ZnO QDSSCs exhibit a considerably higher short‐circuit current density (Jsc) and a strongly enhanced light‐harvesting efficiency, but lower open‐circuit voltages (Voc), resulting in almost the same power‐conversion efficiency of 1.2 %. Through this work, we demonstrate Ag2S as an efficient quantum‐dot‐sensitizing material that has the potential to replace Cd‐based sensitizers for eco‐friendly applications.  相似文献   

20.
Delivery vehicles that are able to actively seek and precisely locate targeted tissues using concentration gradients of signaling molecules have hardly been explored. The directed movement toward specific cell types of cargo‐loaded polymeric nanomotors along a hydrogen peroxide concentration gradient (chemotaxis) is reported. Through self‐assembly, bowl‐shaped poly(ethylene glycol)‐b‐polystyrene nanomotors, or stomatocytes, were formed with platinum nanoparticles entrapped in the cavity while a model drug was encapsulated in the inner compartment. Directional movement of the stomatocytes in the presence of a fuel gradient (chemotaxis) was first demonstrated in both static and dynamic systems using glass channels and a microfluidic flow. The highly efficient response of these motors was subsequently shown by their directional and autonomous movement towards hydrogen peroxide secreting neutrophil cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号