首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
2.
Particle shape is a critical parameter that plays an important role in self‐assembly, for example, in designing targeted complex structures with desired properties. Over the last decades, an unprecedented range of monodisperse nanoparticle systems with control over the shape of the particles have become available. In contrast, the choice of micrometer‐sized colloidal building blocks of particles with flat facets, that is, particles with polygonal shapes, is significantly more limited. This can be attributed to the fact that in contrast to nanoparticles, the larger colloids are significantly harder to synthesize as single crystals. It is now shown that a very simple building block, such as a micrometer‐sized polymeric spherical colloidal particle, is already enough to fabricate particles with regularly placed flat facets, including completely polygonal shapes with sharp edges. As an illustration that the yields are high enough for further self‐assembly studies, the formation of three‐dimensional rotator phases of fluorescently labelled, micrometer‐sized, and charged rhombic dodecahedron particles was demonstrated. This method for fabricating polyhedral particles opens a new avenue for designing new materials.  相似文献   

3.
The first steps towards top‐down morphology control in micellar self‐assembly are introduced. Kinetically stable micelles are formed from block copolymers (BCPs) using continuous flow techniques by turbulent mixing of water with a THF solution of polymers. In this way, particle shape and size can be altered from spheres to ellipsoids solely via tuning of mixing parameters from a single BCP.  相似文献   

4.
In cancer treatment, the unsatisfactory solid‐tumor penetration of nanomaterials limits their therapeutic efficacy. We employed an in vivo self‐assembly strategy and designed polymer–peptide conjugates (PPCs) that underwent an acid‐induced hydrophobicity increase with a narrow pH‐response range (from 7.4 to 6.5). In situ self‐assembly in the tumor microenvironment at appropriate molecular concentrations (around the IC50 values of PPCs) enabled drug delivery deeper into the tumor. A cytotoxic peptide KLAK, decorated with the pH‐sensitive moiety cis‐aconitic anhydride (CAA), and a cell‐penetrating peptide TAT were conjugated onto poly(β‐thioester) backbones to produce PT‐K‐CAA, which can penetrate deeply into solid tumors owing to its small size as a single chain. During penetration in vivo, CAA responds to the weak acid, leading to the self‐assembly of PPCs and the recovery of therapeutic activity. Therefore, a deep‐penetration ability for enhanced cancer therapy is provided by this in vivo assembly strategy.  相似文献   

5.
6.
Using two orthogonal external stimuli, programmable staged surface patterning and self‐assembly of inorganic nanoparticles (NPs) was achieved. For gold NPs capped with end‐grafted poly(styrene‐block‐(4‐vinylbenzoic acid)), P(St‐block‐4VBA), block copolymer ligands, surface‐pinned micelles (patches) formed from NP‐adjacent PSt blocks under reduced solvency conditions (Stimulus 1); solvated NP‐remote P(4VBA) blocks stabilized the NPs against aggregation. Subsequent self‐assembly of patchy NPs was triggered by crosslinking the P(4VBA) blocks with copper(II) ions (Stimulus 2). Block copolymer ligand design has a strong effect on NP self‐assembly. Small, well‐defined clusters assembled from NPs functionalized with ligands with a short P(4VBA) block, while NPs tethered with ligands with a long P(4VBA) block formed large irregularly shaped assemblies. This approach is promising for high‐yield fabrication of colloidal molecules and their assemblies with structural and functional complexity.  相似文献   

7.
8.
9.
10.
In achiral rod‐like molecules, a nematic phase is the most disordered liquid crystal phase, which only has one‐directional order in the direction of the molecular long axis. A dumbbell‐shaped molecule (compound 3 : R−C6H10−CH=CH−C6H4−CH=CH−C6H10−R, (R=n C5H11)), and its liquid crystal phase (X phase) are reported, which exhibit high scattering without thermal fluctuation between two nematic phases under a polarized light optical microscope. The X phase was investigated by X‐ray diffraction, scanning electron microscopy, atomic force microscopy, and molecular dynamics simulation. A layered structure was ascertained for which a molecular self‐organization mechanism was postulated in which the super‐structure is based on lateral intermolecular interlocking. A second nematic phase above the X phase consisted of “rice grain”‐shaped particles.  相似文献   

11.
The preparation and aqueous self‐assembly of newly Y‐shaped amphiphilic block polyurethane (PUG) copolymers are reported here. These amphiphilic copolymers, designed to have two hydrophilic poly(ethylene oxide) (PEO) tails and one hydrophobic alkyl tail via a two‐step coupling reaction, can self‐assemble into giant unilamellar vesicles (GUVs) (diameter ≥ 1000 nm) with a direct dissolution method in aqueous solution, depending on their Y‐shaped structures and initial concentrations. More interesting, the copolymers can self‐assemble into various distinct nano‐/microstructures, such as spherical micelles, small vesicles, and GUVs, with the increase of their concentrations. The traditional preparation methods of GUVs generally need conventional amphiphilic molecules and additional complicated conditions, such as alternating electrical field, buffer solution, or organic solvent. Therefore, the self‐assembly of Y‐shaped PUGs with a direct dissolution method in aqueous solution demonstrated in this study supplies a new clue to fabricate GUVs based on the geometric design of amphiphilic polymers.

  相似文献   


12.
A three‐component reaction of benzaldehyde derivatives, methyl cyanoacetate, and guanidinium carbonate affords 2‐amino‐4‐aryl‐1,6‐dihydro‐6‐oxopyrimidine‐5‐carbonitriles and the four‐component reaction of benzaldehyde derivatives, methyl cyanoacetate, and guanidinium hydrochloride in the presence of piperidine leads to piperidinium salts of pyrimidinones. X‐ray crystallography data confirm self‐assembly and H‐bonding in these compounds.  相似文献   

13.
Pepped up polymers : The synthesis and properties of novel chiral cyclic peptides designed to complex with suitable polymers through hydrogen bonding are described. A substituted cyclic peptide self‐assembles into supramolecular nanotubes and develops noncovalent interactions with poly(vinyl alcohol) (PVA) by means of its carboxyl side chains.

  相似文献   


14.
Three triazine‐based dendrons ( 1 a – c ) were successfully prepared in 70–83 % yields. These newly prepared dendrons are found to be liquid crystalline (LC). Computational investigations on molecular conformations and dipoles of triazine‐based dendrons reveal that the substituent on the central triazine unit interrupts strong dipole or H‐bond interactions to avoid dimeric formation. The obtained dendrons, not favouring self‐assembly into dimers but showing LC behaviours, provides evidence for an approach contrary to the conventional method of inducing LC behaviours of dendrons by dimer or trimer formation, mostly through H‐bond interactions.  相似文献   

15.
16.
17.
Here we report on how metastable supramolecular gels can be formed through seeded self‐assembly of multicomponent gelators. Hydrazone‐based gelators decorated with non‐ionic and anionic groups are formed in situ from hydrazide and aldehyde building blocks, and lead through multiple self‐sorting processes to the formation of heterogeneous gels approaching thermodynamic equilibrium. Interestingly, the addition of seeds composing of oligomers of gelators bypasses the self‐sorting processes and accelerates the self‐assembly along a kinetically favored pathway, resulting in homogeneous gels of which the network morphologies and gel stiffness are markedly different from the thermodynamically more stable gel products. Importantly, over time, these metastable homogeneous gel networks are capable of converting into the thermodynamically more stable state. This seeding‐driven formation of out‐of‐equilibrium supramolecular structures is expected to serve as a simple approach towards functional materials with pathway‐dependent properties.  相似文献   

18.
A well‐defined random copolymer of styrene (S) and chloromethylstyrene (CMS) featuring lateral chlorine moieties with an alkyne terminal group is prepared (P(S‐co‐CMS), = 5500 Da, PDI = 1.13). The chloromethyl groups are converted into Hamilton wedge (HW) entities (P(S‐co‐HWS), = 6200 Da, PDI = 1.13). The P(S‐co‐HWS) polymer is subsequently ligated with tetrakis(4‐azidophenyl)methane to give HW‐functional star‐shaped macromolecules (P(S‐co‐HWS))4, = 25 100 Da, PDI = 1.08). Supramolecular star‐shaped copolymers are then prepared via self‐assembly between the HW‐functionalized four‐arm star‐shaped macromolecules ( P(S‐co‐HW )) 4 and cyanuric acid (CA) end‐functionalized PS (PS–CA, = 3700 Da, PDI = 1.04), CA end‐functionalized poly(methyl methacrylate) (PMMA–CA, = 8500 Da, PDI = 1.13) and CA end‐functionalized polyethylene glycol (PEG–CA, = 1700 Da, PDI = 1.05). The self‐assembly is monitored by 1H NMR spectroscopy and light scattering analyses.  相似文献   

19.
Assembled tubular materials have attracted widespread attention due to their potential applications in catalysis, bionics, and optic‐electronics. Many versatile methods, including template assistance and self‐assembly, have been developed for fabrication of tubular materials. Here we demonstrate a self‐growing strategy to prepare large‐scale crystal assembly tubes. Addition of the template and the need for the sophisticated equipment are avoided with this method. The sidewall of the tubes is composed of a layer of polyhedral crystals that are connected together through grain coalescence. We demonstrate that the assembled tubular structure is obtained by the synergetic effect of the passivation layer and the dissolution‐recrystallization process. This facile one‐step strategy and the formation mechanism will offer guidance for fabrication of new superstructures.  相似文献   

20.
A biomimetic conical submicrochannel (tip side ca. 400 nm) with functions of continuously tunable ion rectification and conductance based on thermoresponsive polymer layer‐by‐layer (LbL) self‐assembly is presented. These self‐assembled polymers with different layers exhibited a capability to regulate the effective channel diameter, and different ion rectifications/conductance were achieved. By controlling temperature, the conformation and wettability of the assembled polymers were reversibly transformed, thus the ion rectification/conductance could be further adjusted subtly. Owing to the synergistic effect, the ion conductance could be tuned over a wide range spanning three orders of magnitude. Moreover, the proposed system can be applied for on‐demand on‐off molecule delivery, which was important for disease therapy. This study opens a new door for regulating channel size according to actual demand and sensing big targets with different size with one channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号