首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
To fine-tune surface ligands towards high-performance devices, we developed an in situ passivation process for all-inorganic cesium lead iodide (CsPbI3) perovskite quantum dots (QDs) by using a bifunctional ligand, L-phenylalanine (L-PHE). Through the addition of this ligand into the precursor solution during synthesis, the in situ treated CsPbI3 QDs display significantly reduced surface states, increased vacancy formation energy, higher photoluminescence quantum yields, and much improved stability. Consequently, the L-PHE passivated CsPbI3 QDs enabled the realization of QD solar cells with an optimal efficiency of 14.62 % and red light-emitting diodes (LEDs) with a highest external quantum efficiency (EQE) of 10.21 %, respectively, demonstrating the great potential of ligand bonding management in improving the optoelectronic properties of solution-processed perovskite QDs.  相似文献   

2.
Phase‐stable CsSnxPb1?xI3 perovskite quantum dots (QDs) hold great promise for optoelectronic applications owing to their strong response in the near‐infrared region. Unfortunately, optimal utilization of their potential is limited by the severe photoluminescence (PL) quenching, leading to extremely low quantum yields (QYs) of approximately 0.3 %. The ultra‐low sodium (Na) doping presented herein is found to be effective in improving PL QYs of these alloyed QDs without alerting their favourable electronic structure. X‐ray photoelectron spectroscopy (XPS) studies suggest the formation of a stronger chemical interaction between I? and Sn2+ ions upon Na doping, which potentially helps to stabilize Sn2+ and suppresses the formation of I vacancy defects. The optimized PL QY of the Na‐doped QDs reaches up to around 28 %, almost two orders of magnitude enhancement compared with the pristine one.  相似文献   

3.
Long alkyl‐chain capping ligands are indispensable for preparing stable colloidal quantum dots. However, its insulating feature blocks efficient carrier transport among QDs, leading to inferior performance in light‐emitting diodes (LEDs). The trade‐off between conductivity and colloidal stability of QDs has now been overcome. Methylamine lead bromide (MAPbBr3) QDs with a conjugated alkyl‐amine, 3‐phenyl‐2‐propen‐1‐amine (PPA), as ligands were prepared. Owing to electron cloud overlapping and the delocalization effect of conjugated molecules, the conductivity and carrier mobility of PPA‐QDs films increased almost 22 times over that of OA‐QD films without compromising colloidal stability and photoluminescence. PPA‐QDs LEDs exhibit a maximum current efficiency of 9.08 cd A?1, which is 8 times of that of OA‐QDs LEDs (1.14 cd A?1). This work provides critical solution for the poor conductivity of QDs in applications of energy‐related devices.  相似文献   

4.
A new approach to probe the effect of graphene on photochemical charge separation in donor–acceptor conjugates is devised. For this, multimodular donor–acceptor conjugates, composed of three molecules of pyrene, a subphthalocyanine, and a fullerene C60 ((Pyr)3SubPc‐C60), have been synthesized and characterized. These systems were hybridized on few‐layer graphene through π–π stacking interactions of the three pyrene moieties. The hybrids were characterized using Raman, HRTEM, and spectroscopic and electrochemical techniques. The energy levels of the donor–acceptor conjugates were fine‐tuned upon interaction with graphene and photoinduced charge separation in the absence and presence of graphene was studied by femtosecond transient absorption spectroscopy. Accelerated charge separation and recombination was detected in these graphene‐decorated conjugates suggesting that they could be used as materials for fast‐responding optoelectronic devices and in light energy harvesting applications.  相似文献   

5.
A new design for a quasi‐solid‐state Forster resonance energy transfer (FRET) enabled solar cell with unattached Lucifer yellow (LY) dye molecules as donors and CdS/CdSe quantum dots (QDs) tethered to titania (TiO2) as acceptors is presented. The Forster radius is experimentally determined to be 5.29 nm. Sequential energy transfer from the LY dye to the QDs and electron transfer from the QDs to TiO2 is followed by fluorescence quenching and electron lifetime studies. Cells with a donor–acceptor architecture (TiO2/CdS/CdSe/ZnS‐LY/S2?‐multi‐walled carbon nanotubes) show a maximum incident photon‐to‐current conversion efficiency of 53 % at 530 nm. This is the highest efficiency among Ru‐dye free FRET‐enabled quantum dot solar cells (QDSCs), and is much higher than the donor or acceptor‐only cells. The FRET‐enhanced solar cell performance over the majority of the visible spectrum paves the way to harnessing the untapped potential of the LY dye as an energy relay fluorophore for the entire gamut of dye sensitized, organic, or hybrid solar cells.  相似文献   

6.
An alternating triarylamine‐functionalized fluorene‐based copolymer synthesized using a Suzuki–Miyaura cross‐coupling procedure is used as blue emitting layer in polymer light‐emitting diodes (PLEDs). Subsequently, the effects of CdSe/ZnS quantum dots (QDs) on the optoelectronic properties of the copolymer are investigated. Therefore, CdSe/ZnS QDs are embedded into the copolymer matrix and hybrid PLEDs are fabricated. The devices comprised of CdSe/ZnS QDs reveal enhanced performances, yielding about 3.4 times more luminous efficiency than that of the device without QDs. Further enhancement is achieved by using electron transport layer; the luminous efficiency rose from 0.065 to 1.740 cd A?1 for the hybrid PLEDs, corresponding to a superb 27‐fold intensification of the efficiency. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 147–156  相似文献   

7.
A series of one donor–two acceptor (D–A1)‐(D–A2) random terpolymers containing a 2,7‐carbazole donor and varying compositions of perylene diimide (PDI) and naphthalene diimide (NDI) acceptors was synthesized via Suzuki coupling polymerization. The optical properties of the terpolymers are weighted sums of the constituent parent copolymers and all show strong absorption over the 400 to 700 nm range with optical bandgaps ranging from 1.77 to 1.87 eV, depending on acceptor composition. The copolymers were tested as acceptor materials in bulk heterojunction all‐polymer solar cells using poly[(4,8‐bis‐(2‐ethylhexyloxy)‐benzo[1,2‐b;4,5‐b′]dithiophene)‐2,6‐diyl‐alt‐(4‐(2‐ethylhexanoyl)‐thieno[3,4‐b]thiophene)‐2,6‐diyl] (PBDTTT‐C) as the donor material. In contrast to the optoelectronic properties, the measured device parameters are not composition dependent, and rather depend solely on the presence of the NDI unit, where the devices containing any amount of NDI perform half as well as those using the parent polymer containing only carbazole and PDI. Overall this is the first example of a one donor–two acceptor random terpolymer system containing perylene diimide (PDI) and naphthalene diimide (NDI) acceptor units, and demonstrates a facile method of tuning polymer optoelectronic properties while minimizing the need for complicated synthetic and purification steps. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3337–3345  相似文献   

8.

Isoregic conjugated polymers composed of thiophene and dialkoxybenzene units were designed to harvest incident light in the mid‐visible energy range (band gap of 2.1 eV). Poly(1,4‐bis(2‐thienyl)‐2,5‐diheptoxybenzene) (PBTB(OC7H15)2) and poly(1,4‐bis(2‐thienyl)‐2,5‐didodecyloxybenzene) (PBTB(OC12H25)2) have shown significant photovoltaic performance as an electron donor when used in tandem with the electron acceptor [6, 6]‐phenyl C61‐butyric acid methyl ester (PCBM) in bulk hetero‐junction photovoltaic devices. Photovoltaic devices incorporating PBTB(OC7H15)2 and PCBM have shown AM1.5 efficiencies of ~0.6% with a short circuit current density of 2.5 mA/cm2, an open circuit voltage of 0.74 V, and a fill factor of 0.32. Incident Photon‐to‐Current Efficiency (IPCE) of the device was found to be ca. 16% at 410 nm. In order to examine the relationship between the molecular structure of the polymers and their electronic energy levels, and to correlate this with photovoltaic performance, optoelectronic and electrochemical results are discussed in relation to the I‐V characteristics of the devices. Additionally, a computer‐aided simulation is used to gain further insight into the effect of polymer structure on the energetic relationships in the bulk heterojunction devices.  相似文献   

9.
A new crystal of a charge‐transfer (CT) complex was prepared through supramolecular assembly and it has unique two‐dimensional (2D) morphology. The CT nature of the ground and excited states of this new Bpe‐TCNB cocrystal (BTC) were confirmed by electron spin resonance measurements, spectroscopic studies, and theoretical calculations, thus providing a comprehensive understanding of the CT interactions in organic donor–acceptor systems. And the lowest CT1 excitons are responsible for the efficient photoluminescence (ΦPL=19 %), which can actively propagate in individual 2D BTCs without anisotropy, thus implying that the optical waveguide property of the crystal is not related to the molecular stacking structure. This unique 2D CT cocrystal exhibits potential for use in functional photonic devices in the next‐generation optoelectronic communications.  相似文献   

10.
The present work provides an ideal model for intra‐chain energy transfer study in conjugated polymer through shielding the polymer backbone by using bulky polyhedral oligomeric silsesquioxanes (POSS). POSS provides a circumference shielding of the polymer backbone to prevent closed packing of the polymer chains, allowing the intra‐chain energy transfer dominating in large concentration range. Bi‐functional POSS (B‐POSS) is specially designed to separate donor (fluorene) and acceptor (benzothiadiazole) within the polymer chain. The dynamics of energy transfer in poly(fluorene‐POSS‐alt‐POSS‐benzothiodiazole) (PTBtTbOFl3) is studied by steady state as well as time resolved fluorescence spectroscopy at different donor/acceptor ratios. Results reveal that POSS can effectively shield inter‐chains energy transfer of the polymers, suggesting it is an effective model for energy transfer study with less inter‐chains effects. PTBtTbOFl3 works as a chemosensors is also reported in the detection of explosive derivatives. These results provide insights for optimizing nanostructured materials for use in optoelectronic devices. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1225–1233  相似文献   

11.
We successfully prepared QDs incorporated into a silica/alumina monolith (QDs‐SAM) by a simple sol–gel reaction of an Al–Si single precursor with CsPbBr3 QDs blended in toluene solution, without adding water and catalyst. The resultant transparent monolith exhibits high photoluminescence quantum yields (PLQY) up to 90 %, and good photostability under strong illumination of blue light for 300 h. We show that the preliminary ligand exchange of didodecyl dimethyl ammonium bromide (DDAB) was very important to protect CsPbBr3 QDs from surface damages during the sol–gel reaction, which not only allowed us to maintain the original optical properties of CsPbBr3 QDs but also prevented the aggregation of QDs and made the monolith transparent. The CsPbBr3 QDs‐SAM in powder form was easily mixed into the resins and applied as color‐converting layer with curing on blue light‐emitting diodes (LED). The material showed a high luminous efficacy of 80 lm W−1 and a narrow emission with a full width at half maximum (FWHM) of 25 nm.  相似文献   

12.
Despite the bright and tuneable photoluminescence (PL) of semiconductor quantum dots (QDs), the PL instability induced by Auger recombination and oxidation poses a major challenge in single‐molecule applications of QDs. The incomplete information about Auger recombination and oxidation is an obstacle in the resolution of this challenge. Here, we report for the first time that Auger‐ionized QDs beat self‐sensitized oxidation and the non‐digitized PL intensity loss. Although high‐intensity photoactivation insistently induces PL blinking, the transient escape of QDs into the ultrafast Auger recombination cycle prevents generation of singlet oxygen (1O2) and preserves the PL intensity. By the detection of the NIR phosphorescence of 1O2 and evaluation of the photostability of single QDs in aerobic, anaerobic, and 1O2 scavenger‐enriched environments, we disclose relations of Auger ionization and 1O2‐mediated oxidation to the PL stability of single QDs, which will be useful during the formulation of QD‐based single‐molecule imaging tools and single‐photon devices.  相似文献   

13.
Structural and optoelectronic properties of ferrocene (FeC10H10) using various exchange correlation potentials including Spin Polarized Generalized Gradient Approximation (SPGGA), Hybrid Density Functional Theory (SPHYB‐DFT), and hybrid density functional Becke3LYP are investigated. Obtained bandgap by the SPHYB‐DFT and SPGGA methods show consistency with the experiment, that are indirect and direct, respectively. The cell size effects on physical properties of ferrocene studied about two types of its lattice parameters ( I and II ). The calculated results reveal that the cell size and the lattice parameters have a remarkable effect on optoelectronic and magnetic properties of ferrocene. However, there is no significant difference between I and II within molecular, structural and charge transitions in calculating UV/Vis spectrum. The calculated electronic absorption spectrum is in good agreement with experiment, in which two major electron‐transition bands derived from d–d (n → n*) and n → π* metal to ligand. NBO analyses show that there are strong donor‐acceptor interactions between central Fe atoms and cyclopentadienyl (Cp) rings that these results are in close agreement with contour plots of charge densities for prediction of the strong covalent bond between C and Fe. The optoelectronic properties of ferrocene predict that it can be efficiently used in the semiconductor devices.  相似文献   

14.
Improving the stability of lead halide perovskite quantum dots (QDs) in a system containing water is the key for their practical application in artificial photosynthesis. Herein, we encapsulate low‐cost CH3NH3PbI3 (MAPbI3) perovskite QDs in the pores of earth‐abundant Fe‐porphyrin based metal organic framework (MOF) PCN‐221(Fex) by a sequential deposition route, to construct a series of composite photocatalysts of MAPbI3@PCN‐221(Fex) (x=0–1). Protected by the MOF the composite photocatalysts exhibit much improved stability in reaction systems containing water. The close contact of QDs to the Fe catalytic site in the MOF, allows the photogenerated electrons in the QDs to transfer rapidly the Fe catalytic sites to enhance the photocatalytic activity for CO2 reduction. Using water as an electron source, MAPbI3@PCN‐221(Fe0.2) exhibits a record‐high total yield of 1559 μmol g?1 for photocatalytic CO2 reduction to CO (34 %) and CH4 (66 %), 38 times higher than that of PCN‐221(Fe0.2) in the absence of perovskite QDs.  相似文献   

15.
A new and highly efficient cathode interlayer material for organic photovoltaics (OPVs) was produced by integrating C60 fullerene monomers into ionene polymers. The power of these novel “C60‐ionenes” for interface modification enables the use of numerous high work‐function metals (e.g., silver, copper, and gold) as the cathode in efficient OPV devices. C60‐ionene boosted power conversion efficiencies (PCEs) of solar cells, fabricated with silver cathodes, from 2.79 % to 10.51 % for devices with a fullerene acceptor in the active layer, and from 3.89 % to 11.04 % for devices with a non‐fullerene acceptor in the active layer, demonstrating the versatility of this interfacial layer. The introduction of fullerene moieties dramatically improved the conductivity of ionene polymers, affording devices with high efficiency by reducing charge accumulation at the cathode/active layer interface. The power of C60‐ionene to improve electron injection and extraction between metal electrodes and organic semiconductors highlights its promise to overcome energy barriers at the hard‐soft materials interface to the benefit of organic electronics.  相似文献   

16.
To harvest energy from the near‐infrared (near‐IR) and infrared (IR) regions of the electromagnetic spectrum, which constitutes nearly 70 % of the solar radiation, there is a great demand for near‐IR and IR light‐absorbing sensitizers that are capable of undergoing ultrafast photoinduced electron transfer when connected to a suitable electron acceptor. Towards achieving this goal, in the present study, we report multistep syntheses of dyads derived from structurally modified BF2‐chelated azadipyrromethene (ADP; to extend absorption and emission into the near‐IR region) and fullerene as electron‐donor and electron‐acceptor entities, respectively. The newly synthesized dyads were fully characterized based on optical absorbance, fluorescence, geometry optimization, and electrochemical studies. The established energy level diagram revealed the possibility of electron transfer either from the singlet excited near‐IR sensitizer or singlet excited fullerene. Femtosecond and nanosecond transient absorption studies were performed to gather evidence of excited state electron transfer and to evaluate the kinetics of charge separation and charge recombination processes. These studies revealed the occurrence of ultrafast photoinduced electron transfer leading to charge stabilization in the dyads, and populating the triplet states of ADP, benzanulated‐ADP and benzanulated thiophene‐ADP in the respective dyads, and triplet state of C60 in the case of BF2‐chelated dipyrromethene derived dyad during charge recombination. The present findings reveal that these sensitizers are suitable for harvesting light energy from the near‐IR region of the solar spectrum and for building fast‐responding optoelectronic devices operating under near‐IR radiation input.  相似文献   

17.
Lead‐based perovskite nanocrystals (NCs) have outstanding optical properties and cheap synthesis conferring them a tremendous potential in the field of optoelectronic devices. However, two critical problems are still unresolved and hindering their commercial applications: one is the fact of being lead‐based and the other is the poor stability. Lead‐free all‐inorganic perovskite Cs3Bi2X9 (X=Cl, Br, I) NCs are synthesized with emission wavelength ranging from 400 to 560 nm synthesized by a facile room temperature reaction. The ligand‐free Cs3Bi2Br9 NCs exhibit blue emission with photoluminescence quantum efficiency (PLQE) about 0.2 %. The PLQE can be increased to 4.5 % when extra surfactant (oleic acid) is added during the synthesis processes. This improvement stems from passivation of the fast trapping process (2–20 ps). Notably, the trap states can also be passivated under humid conditions, and the NCs exhibited high stability towards air exposure exceeding 30 days.  相似文献   

18.
Lead‐based perovskite nanocrystals (NCs) have outstanding optical properties and cheap synthesis conferring them a tremendous potential in the field of optoelectronic devices. However, two critical problems are still unresolved and hindering their commercial applications: one is the fact of being lead‐based and the other is the poor stability. Lead‐free all‐inorganic perovskite Cs3Bi2X9 (X=Cl, Br, I) NCs are synthesized with emission wavelength ranging from 400 to 560 nm synthesized by a facile room temperature reaction. The ligand‐free Cs3Bi2Br9 NCs exhibit blue emission with photoluminescence quantum efficiency (PLQE) about 0.2 %. The PLQE can be increased to 4.5 % when extra surfactant (oleic acid) is added during the synthesis processes. This improvement stems from passivation of the fast trapping process (2–20 ps). Notably, the trap states can also be passivated under humid conditions, and the NCs exhibited high stability towards air exposure exceeding 30 days.  相似文献   

19.
A series of donor–acceptor‐substituted alkynes, 2 a – f , was synthesized in which the length of the π‐conjugated polyyne spacer between the N,N‐diisopropylanilino donor and the 1,1,4,4‐tetracyanobuta‐1,3‐diene (TCBD) acceptor was systematically changed. The effect of this structural change on the optoelectronic properties of the molecules and, ultimately, their third‐order optical nonlinearity was comprehensively investigated. The branched N,N‐diisopropyl groups on the anilino donor moieties combined with the nonplanar geometry of 2 a – f imparted exceptionally high solubility to these chromophores. This important property allowed for performing INADEQUATE NMR measurements without 13C labeling, which, in turn, resulted in a complete assignment of the carbon skeleton in chromophores 2 a – f and the determination of the 13C–13C coupling constants. This body of data provided unprecedented insight into characteristic 13C chemical shift patterns in push–pull‐substituted polyynes. Electrochemical and UV/Vis spectroscopic studies showed that the HOMO–LUMO energy gap decreases with increasing length of the polyyne spacer, while this effect levels off for spacers with more than four acetylene units. The third‐order optical nonlinearity of this series of molecules was determined by measuring the rotational averages of the third‐order polarizabilities (γrot) by degenerate four‐wave mixing (DFWM). These latter studies revealed high third‐order optical nonlinearities for the new chromophores; most importantly, they provided fundamental insight into the effect of the conjugated spacer length in D–A polyynes, that can be exploited in the future design of suitable charge‐transfer chromophores for applications in optoelectronic devices.  相似文献   

20.
Picosecond‐resolved Förster resonance energy transfer (FRET) from various vibronic bands in benzo[a]pyrene (BP) shows a strong dependency on the spectral overlap of an energy acceptor in a confined environment. Our study on the dipolar interactions between BP and different acceptors, including ethidium (Et), acridine orange (AO), and crystal violet (CV), at the surface of a model anionic micelle revealed that the Förster distance (R0) and the rate of energy transfer is dependent on the individual spectral overlap of the vibronic bands of BP with the absorption spectra of the different energy acceptors. The differential behavior of the vibronic bands is compared with that of different dyes [quantum dots (QDs)] in a “dye‐blend” (mixture) under FRET to an energy acceptor. Comparison of the FRET of the QDs with that of BP confirmed the independent nature of the dipolar interaction of the vibronic bands with other organic molecules, and the use of deconvolution techniques in the interpretation of the donor–acceptor (D –A) distance was also justified. We also showed that the consideration of differential FRET from the vibronic bands of BP and from the QDs in the dye‐blend is equally acceptable in theoretical frameworks including the Infelta–Tachiya model and D –A distribution analysis in nanoenvironments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号