首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Betulinic acid is a triterpenoid organic acid with remarkable antitumor properties and is naturally present in many fruits, condiments and traditional Chinese medicines. Currently, a strategy was developed for the identification of metabolites following the in vivo and in vitro biotransformation of Betulinic acid with rat intestinal bacteria utilizing ultra high performance liquid chromatography with time‐of‐flight mass spectrometry with polymeric solid‐phase extraction. As a result, 46 metabolites were structurally characterized. The results demonstrated that Betulinic acid is universally metabolized in vivo and in vitro, and Betulinic acid could undergo general metabolic reactions, including oxidation, methylation, desaturation, loss of O and loss of CH2. Additionally, the main metabolic pathways in vivo and in vitro were determined by calculating the relative content of each metabolite. This is the first study of Betulinic acid metabolism in vivo, whose results provide novel and useful data for better understanding of the safety and efficacy of Betulinic acid.  相似文献   

2.
The Wen‐Jing decoction, a traditional Chinese medicine formula, has been used as a blood‐activating and stasis‐eliminating drug to treat gynaecological syndromes, such as dysmenorrhea, amenorrhea, and menstrual disorders. However, its pharmacodynamic material basis and mechanism of action have not been thoroughly elucidated to date. The goal of this study was to characterize and identify multiple constituents and metabolites in Wen‐Jing decoction. An ultra high performance liquid chromatography coupled with electrospray ionization quadrupole time‐of‐flight tandem mass spectrometry method was established and validated in the present study for the first time. A total of 101 compounds, including 11 monoterpene glycosides, 19 flavonoids, 49 triterpene saponins, 5 phthalides, 3 phytoecdysones, and 14 others, were unambiguously or tentatively characterized by comparing their retention times and MS data with reference standards or with data reported in the literature. After oral administration of Wen‐Jing decoction, 27 compounds, including nine prototype compounds and 18 metabolites were detected in rat plasma. Thus, the ultra high performance liquid chromatography coupled with electrospray ionization quadrupole time‐of‐flight tandem mass spectrometry method was found to be efficient for in‐depth structural elucidation of chemical compounds in complex matrices of herbal medicines, which will provide useful chemical information for quality control and mechanism‐of‐action research.  相似文献   

3.
An ultra high performance liquid chromatography coupled with electrospray ionization quadrupole time‐of‐flight mass spectrometry method in both positive and negative ion modes was established in order to comprehensively investigate the major constituents in Wu Ji Bai Feng Pill. Briefly, a Waters ACQUITY UPLC HSS C18 column was used to separate the aqueous extract of Wu Ji Bai Feng Pill. A total of 0.1% formic acid in acetonitrile and 0.1% aqueous formic acid v/v were used as the mobile phase. All analytes were determined using quadrupole time‐of‐flight mass spectrometry with electrospray ionization source in positive and negative ion modes. At length, a total of 173 components including flavones and their glycosides, monoterpene glycosides, triterpene saponins, phenethylalchohol glycosides, iridoid glycosides, phthalides, tanshinones, phenolic acids, sesquiterpenoids and cyclopeptides were identified or tentatively characterized in Wu Ji Bai Feng Pill in an analysis of 16.0 min based on the accurate mass and tandem mass spectrometry behaviors. The developed method is rapid and highly sensitive to characterize the chemical constituents of Wu Ji Bai Feng Pill, which could not only be used for chemical standardization and quality control of Wu Ji Bai Feng Pill, but also be helpful for further study in vivo metabolism of Wu Ji Bai Feng Pill.  相似文献   

4.
Isovitexin, a bioactive flavonoid constituent isolated from Desmodii Styracifolii, is considered an adjuvant for antiurolithiasis diseases. In this study, an ultra‐high‐performance liquid chromatography coupled with hybrid triple quadruple time‐of‐flight mass spectrometry method was developed to characterize and compare the metabolic profiling of isovitexin experimented on normal and kidney stone model rats. The comparative research indicated that 28 metabolites (18 phase I and 10 phase II) in normal rats and 33 metabolites (20 phase I and 13 phase II) in kidney stone model rats were initially identified. The results of relative quantitative determination reflected that the contents of metabolites produced by deglycosylation, reduction, and isomerization in kidney stone model rats were greater than those in healthy rats. Instead, the levels of oxidative and dehydrogenated metabolites in normal groups were higher than those in kidney stone model groups. The results of this study are valuable and important for understanding the metabolic process of isovitexin in clinical application, and especially the metabolism study in kidney stone model rats could provide a beneficial reference for the further search of effective substances associated with the treatment of kidney stones.  相似文献   

5.
Bilobetin, a natural compound extracted from Ginkgo biloba, has various pharmacological activities such as antioxidation, anticancer, antibacterial, antifungal, anti‐inflammatory, antiviral, and promoting osteoblast differentiation. However, few studies have been conducted and there are no reports on its metabolites owing to its low content in nature. In addition, it has been reported to have potential liver and kidney toxicity. Therefore, this study aimed to identify the metabolites of bilobetin in vitro and in vivo. Bilobetin was incubated with liver microsomes to determine metabolites in vitro, and faeces and urine were collected after oral administration to rats to determine metabolites in vivo. After the samples were processed, they were measured using ultra‐high‐performance liquid chromatography coupled with quadrupole time‐of‐flight mass spectrometry. As a result, a total of 21 and 9 metabolites were detected in vivo and in vitro, respectively. Demethylation, demethylation and loss of water, demethylation and hydrogenation, demethylation and glycine conjugation, oxidation, methylation, oxidation and methylation, and hydrogenation were the main metabolic pathways. This study is the first to identify the metabolites of bilobetin and provides a theoretical foundation for the safe use of bilobetin in clinical application and the development of new drugs.  相似文献   

6.
Xiaojin Capsule, a classic traditional Chinese medicine formula, has been used to treat mammary cancer, thyroid nodules, and hyperplasia of the mammary glands. However, its systematic chemical information remained unclear, which hindered the interpretation of the pharmacology and the mechanism of action of this drug. In this research, an ultra high performance liquid chromatography coupled with a quadrupole time‐of‐flight mass spectrometry method was developed to identify the complicated components and metabolites of Xiaojin Capsule. Two acquisition modes, including the MSEnergy mode and fast data directed acquisition mode, were utilized for chemical profiling. As a result, 156 compounds were unambiguously or tentatively identified by comparing their retention times and mass spectrometry data with those of reference standards or literature. After the oral administration of Xiaojin Capsule, 53 constituents, including 24 prototype compounds and 29 metabolites, were detected in rat plasma. The obtained results were beneficial for a better understanding of the therapeutic basis of Xiaojin Capsule. A high‐resolution and efficient separation method was firstly established for systematically characterizing the compounds of Xiaojin Capsule and the associated metabolites in vivo, which could be helpful for quality control and pharmacokinetic studies of this medicine.  相似文献   

7.
As a traditional medicinal plant, Juglans mandshurica has been used for the treatment of cancer. Different organs of this plant showed anti‐tumor activity in clinic and laboratory. Comparative identification of constituents in different plant organs is essential for investigation of the relationship between chemical constituents and pharmacological activities. For this aim, the roots, branches, and leaves of J. mandshurica were extracted with 50% v/v methanol and then subjected to ultra‐high performance liquid chromatography with quadrupole time‐of‐flight mass spectrometry analysis conducted under low and high energy. As a result, we have to date identified 111 compounds consisting of 56 tannins, 29 flavonoids, 13 organic acids, 8 naphthalene derivatives, and 5 anthracenes. Five compounds, namely, diquercetin trihydroxy‐truxinoyl‐glucoside, two quercetin kaempferol dihydroxy‐truxinoyl‐glucosides, syringoyl‐tri‐galloyl‐O‐glucose, and dihydroxy‐naphthalene syringoyl‐glucoside, were tentatively identified as new compounds. Of the compounds identified, 76 were found in the root extract, 67 in the branch extract, and 37 in the leaf extract. Only six compounds including four organic acids and two tannins were found in all three extracts. We developed a rapid and sensitive ultra high performance liquid chromatography with quadrupole time‐of‐flight mass spectrometry approach to identify multiple constituents of complex extracts without separation and ion selection. The results presented provide useful information on further research of the bioactive compounds of J. mandshurica .  相似文献   

8.
A method incorporating double‐wavelength ultra high performance liquid chromatography with quadrupole time‐of‐flight mass spectrometry was developed for the investigation of the chemical fingerprint of Ganmaoling granule. The chromatographic separations were performed on an ACQUITY UPLC HSS C18 column (2.1 × 50 mm, 1.8 μm) at 30°C using gradient elution with water/formic acid (1%) and acetonitrile at a flow rate of 0.4 mL/min. A total of 11 chemical constituents of Ganmaoling granule were identified from their molecular weight, UV spectra, tandem mass spectrometry data, and retention behavior by comparing the results with those of the reference standards or literature. And 25 peaks were selected as the common peaks for fingerprint analysis to evaluate the similarities among 25 batches of Ganmaoling granule. The results of principal component analysis and orthogonal projection to latent structures discriminant analysis showed that the important chemical markers that could distinguish the different batches were revealed as 4,5‐di‐O‐caffeoylquinic acid, 3,5‐di‐O‐caffeoylquinic acid, and 4‐O‐caffeoylquinic acid. This is the first report of the ultra high performance liquid chromatography chemical fingerprint and component identification of Ganmaoling granule, which could lay a foundation for further studies of Ganmaoling granule.  相似文献   

9.
An ultra‐performance liquid chromatography coupled with quadrupole time‐of‐flight mass spectrometry method integrating multi‐constituent determination and fingerprint analysis has been established for quality assessment and control of Scutellaria indica L. The optimized method possesses the advantages of speediness, efficiency, and allows multi‐constituents determination and fingerprint analysis in one chromatographic run within 11 min. 36 compounds were detected, and 23 of them were unequivocally identified or tentatively assigned. The established fingerprint method was applied to the analysis of ten S. indica samples from different geographic locations. The quality assessment was achieved by using principal component analysis. The proposed method is useful and reliable for the characterization of multi‐constituents in a complex chemical system and the overall quality assessment of S. indica.  相似文献   

10.
Corn silk is a well‐known traditional Chinese medicine that has been widely used for its antidiabetic, antioxidant, antihyperlipidemic, and other effects in China for thousands of years. Numerous studies have revealed that corn silk contains multiple bioactive constituents that are beneficial for human health. However, the constituents of corn silk in vivo remain ambiguous. In this study, high‐throughput ultra‐high‐performance liquid chromatography combined with quadrupole time‐of‐flight mass spectrometry technology using multivariate statistical analysis was established to systematically investigate the constituents migrating into blood from corn silk aqueous extract. As a result, 76 compounds were identified, including caffeic acid and ten of its derivatives, (E)‐p‐coumaric acid and two of its derivatives, ferulic acid and four of its derivatives, and five flavones. Among the identified constituents, 21 constituents, including nine prototype components and 12 metabolites derived from eight components, were characterized in sequence. Based on the significance of the results, the applied approach was powerful for the accurate determination and rapid screening of bioactive components from corn silk aqueous extract. The obtained results are valuable for the in‐depth understanding and further pharmacological study of corn silk aqueous extract.  相似文献   

11.
A simple and effective sample preparation process based on miniaturized matrix solid‐phase dispersion was developed for simultaneous determination of phenolic acids (gallic acid, chlorogenic acid, ferulic acid, 3,5‐dicaffeoylqunic acid, 1,5‐dicaffeoylqunic acid, rosmarinic acid, lithospermic acid, and salvianolic acid B), flavonoids (kaempferol‐3‐O‐rutinoside, calycosin, and formononetin), lactones (ligustilide and butyllidephthalide), monoterpenoids (paeoniflorin), phenanthraquinones (cryptotanshinone), and furans (5‐hydroxymethylfurfural) in Naoxintong capsule by ultra high‐performance liquid chromatography. The optimized condition was that 25 mg Naoxintong powder was blended homogeneously with 100 mg Florisil PR for 4 min. One milliliter of methanol/water (75:25, v/v) acidified by 0.05% formic acid was selected to elute all components. It was found that the recoveries of the six types of components ranged from 61.36 to 96.94%. The proposed miniaturized matrix solid‐phase dispersion coupled with ultra high‐performance liquid chromatography was successfully applied to simultaneous determination of the six types of components in Naoxintong capsules. The results demonstrated that the proposed miniaturized matrix solid‐phase dispersion coupled with ultra high‐performance liquid chromatography could be used as an environmentally friendly tool for the extraction and determination of multiple bioactive components in natural products.  相似文献   

12.
A method of ultra high performance liquid chromatography coupled to quadrupole time‐of‐flight mass spectrometry was developed for the simultaneous quantification of 11 sesquiterpene lactones in 11 Jerusalem artichoke leaf samples harvested in a number of areas at different periods. The optimal chromatographic conditions were achieved on a ZORBAX Eclipse Plus C18 column (3.0 × 150 mm, 1.8 μm) with linear gradient elution of methanol and water in 8 min. Quantitative analysis was carried out under selective ion monitoring mode. All of the sesquiterpene lactones showed good linearity (R 2 ≥ 0.9949), repeatability (relative standard deviations < 4.66%), and intra‐ and interday precisions (relative standard deviations < 4.52%) with an accuracy of 95.24–104.84%. The recoveries measured at three concentration levels varied from 95.07 to 104.87% with relative standard deviations less than 4.9%. The limit of detection and limit of quantitation for this method were 0.89–5.05 and 1.12–44.33 ng/mL, respectively. The results showed that the contents of sesquiterpene lactones varied significantly in the Jerusalem artichoke leaf samples from different areas. Among them, the content of sesquiterpene lactones in the sample collected from Dalian, Liaoning province was the highest and the early flowering period was considered to be the optimal harvest time.  相似文献   

13.
(R)‐Salbutamol is a selective β2‐adrenoreceptor agonist, which produces a short‐acting bronchodilator effect and is widely used for the treatment of respiratory diseases in humans. Drug metabolism and identification of the metabolites play an essential role in the evaluation of the overall efficacy and safety of the drugs in clinical practices. There are few reports on the identification of major metabolites of (R)‐salbutamol in humans, and the number of identified metabolites is very limited. In this research, a method of ultra‐high performance liquid chromatography coupled with quadrupole time‐of‐flight mass spectrometry was developed for the discovery and identification of (R)‐salbutamol and its major metabolites in human biological samples. Totally, twelve metabolites of (R)‐salbutamol were found and identified and all the metabolites could be found in urine, one metabolite in plasma and two metabolites in feces. Among all the metabolites, eight metabolites have never been reported before. The results indicated that (R)‐salbutamol was mainly metabolized through isomerization, oxidation, reduction, glucuronidation, and sulfation pathways in vivo. The possible metabolic pathways of (R)‐salbutamol were subsequently presented in this study, which contribute to a better understanding of the metabolism of (R)‐salbutamol in humans.  相似文献   

14.
Acanthopanax Senticosus Harms. has been used widely in traditional Chinese medicine for the treatment of chronic bronchitis, neurasthenia, hypertension and ischemic heart disease. However, the in vivo constituents of the stem of Acanthopanax Senticosus remain unknown. In this paper, ultra high performance liquid chromatography with electrospray ionization quadrupole time‐of‐flight mass spectrometry and the MarkerLynxTM software combined with multiple data processing approach were used to study the constituents in vitro and in vivo. The aqueous extract from the Acanthopanax Senticosus stem and the compositions in rat serum after intragastric administration were completely analyzed. Consequently, 115 compounds in the aqueous extract from Acanthopanax Senticosus stem and 41 compounds absorbed into blood were characterized. Of the 115 compounds in vitro, 54 were reported for first time, including sinapyl alcohol, sinapyl alcohol diglucoside, and 1‐O‐sinapoyl‐β‐d ‐glucose. In the 41 compounds in vivo, 7 were prototype components and 34 were metabolites which were from 21 components of aqueous extract from Acanthopanax Senticosus stem, and the metabolic pathways of the metabolites were elucidated for first time. The results narrowed the range of screening the active components and provided a basis for the study of action mechanism and pharmacology.  相似文献   

15.
16.
Plantaginis Semen is commonly used in traditional medicine to treat edema, hypertension, and diabetes. The commercially available Plantaginis Semen in China mainly comes from three species. To clarify the chemical composition and distinct different species of Plantaginis Semen, we established a metabolite profiling method based on ultra high performance liquid chromatography with electrospray ionization quadrupole time‐of‐flight tandem mass spectrometry coupled with elevated energy technique. A total of 108 compounds, including phenylethanoid glycosides, flavonoids, guanidine derivatives, terpenoids, organic acids, and fatty acids, were identified from Plantago asiatica L., P. depressa Willd., and P. major L. Results showed significant differences in chemical components among the three species, particularly flavonoids. This study is the first to provide a comprehensive chemical profile of Plantaginis Semen, which could be involved into the quality control, medication guide, and developing new drug of Plantago seeds.  相似文献   

17.
Roots of Ophiopogon japonicus have been used as a functional food ingredient and traditional Chinese medicine for a long time in China. Homoisoflavonoids are one of the major kinds of bioactive compounds in O. japonicus; however, literature data about its homoisoflavonoids profile are scarce because of the complex ingredients with low abundance. Here, homoisoflavonoid fraction was prepared by petroleum ether extraction. Then, a high‐speed countercurrent chromatography off‐line coupling with high‐performance liquid chromatography–diode array detector?quadrupole time‐of‐flight tandem mass spectrometry was developed for systematic identification of homoisoflavonoids. After that, 39 homoisoflavonoids, including 29 homoisoflavanone and 10 homoisoflavone, were unambiguously or tentatively identified, while 12 of them were reported in O. japonicus for the first time. Finally, eight available homoisoflavonoids were sensitively, precisely, and accurately determined by standard calibration curves, with limit of detection and limit of quantification in the range of 0.05–0.30 μg/mL and 0.12–0.66 μg/mL, relative standard deviation less than 7.3% for intra‐ and interday variations, and recovery at 94.5–105.2%. Collectively, our developed method is efficient, reliable, and valuable to profile chemical components of complex natural products.  相似文献   

18.
19.
Xiao‐Qing‐Long‐Tang (XQLT) is a classical Chinese medicine formula. It is generally used for the treatment of common cold, bronchial asthma, and allergic rhinitis in Asia. In this study, a multicomponent quantification fingerprinting approach based on ultra high performance liquid chromatography coupled with quadrupole time‐of‐flight mass spectrometry has been developed for the analysis of compounds in XQLT in 14.5 min. A total of 52 compounds were identified by co‐chromatography of sample extract with authentic standards and comparing the retention time, UV spectra, molecular ions and characteristic fragment ions with those of authentic standards, or tentatively identified by MSE determination along with Mass Fragment software. Moreover, the method was validated for the simultaneous quantification of 16 components in XQLT commercial products. The method is practical for comprehensive standardization of XQLT and holistic comparison of its commercial products from different manufacturers.  相似文献   

20.
The chemical constituents of the Siraitia grosvenorii leaf extract were studied. Firstly, high‐speed counter‐current chromatography was applied to the one‐step separation of four compounds from S. grosvenorii leaf extract with the solvent system composed of 0.01% acetic acid water/n‐butanol/n‐hexane/methanol (5:3:1:1, v/v/v/v). In this work, 270 mg of crude sample yielded four compounds, a new kaempferol O‐glycoside derivative, kaempferol 3‐O‐α‐L‐[4‐O‐(4‐carboxy‐3‐hydroxy‐3‐methylbutanoyl)]‐rhamnopyranoside‐7‐OαL‐rhamnopyranoside, named kaempferitrin A (2.1 mg, 90%), and three known compounds, grosvenorine (3.4 mg, 93%), kaempferitrin (14.4 mg, 99%) and afzelin (4 mg, 98%), and the structures of these compounds were identified by NMR spectroscopy and mass spectrometry. Then, ultra high performance liquid chromatography with electrospray ionization quadrupole time‐of‐flight mass spectrometry was used to illustrate the dominant flavonoids in S. grosvenorii leaf extract. 34 flavonoids including 19 kaempferol O‐glycosides, 4 quercetin O‐glycosides, 6 flavanone derivatives, and 5 polymethoxyflavones, were accurately or tentatively identified by carefully comparing their retention times, UV data, precise masses, the typical fragments of the standards and literature data. Most of these compounds were reported for the first time. This study establishes a foundation for the further development and utilization of S. grosvenorii leaves in future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号