首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Diels–Alder reactions employing 1,2‐azaborine heterocycles as 1,3‐dienes are reported. Carbocyclic compounds with high stereochemical and functional complexity are produced, as exemplified by the straightforward two‐step synthesis of an amino allyl boronic ester bearing four contiguous stereocenters as a single diastereomer. Whereas electron‐deficient dienophiles undergo irreversible Diels–Alder reactions, a reversible Diels–Alder reaction with the less electron‐deficient methyl acrylate is observed. Both the N and the B substituent of the 1,2‐azaborine exert significant influence on the [4+2] cycloaddition reactivity as well as the aromatic character of the heterocycle. The experimentally determined thermodynamic parameters of the reversible Diels–Alder reaction between 1,2‐azaborines and methyl acrylate correlate with aromaticity trends and place 1,2‐azaborines approximately between furan and thiophene on the aromaticity scale.  相似文献   

2.
The mechanisms of the photochemical isomerization reactions were investigated theoretically by using a model system of 1,2‐dihydro‐1,2‐azaborine with the CAS(6,6)/6‐311G(d,p) and MP2‐CAS‐(6,6)/6‐311++G(3df,3pd)//CAS(6,6)/6‐311G(d,p) methods. Three reaction pathways, which lead to three kinds of photoisomers, have been examined. The structures of the conical intersections, which play a decisive role in such photorearrangements, were obtained. The thermal (or dark) reactions of the reactant species have also been examined by using the same level of theory to assist in providing a qualitative explanation of the reaction pathways. The model investigations suggest that the preferred reaction route for 1,2‐dihydro‐1,2‐azaborine, which leads to the Dewar 1,2‐dihydro‐1,2‐azaborine photoproduct, is as follows: reactant→Franck–Condon region→conical intersection→photoproduct. The results obtained allow a number of predictions to be made.  相似文献   

3.
The photoisomerization of 1,2‐dihydro‐1,2‐azaborine was investigated by high‐level multireference ab initio and density functional theory calculations. The intermediates (IMs) and transition states (TSs) on the S0 and S1 states were optimized using the state‐averaged complete active space self‐consistent field method. The multireference configuration interaction method with the Davidson correction was used to obtain accurate energetics. Moreover, the conical intersections (CIs), which play a crucial role in photoisomerization, were also optimized. On the basis of the calculation results, the most favorable proposed reaction pathway is as follows: reactant→Franck‐Condon region→TS1→CI→IM0→TS0P→product. The product was not directly formed through the CI, and the IM0 existed on the S0 state. These results show that the isomerization of 1,2‐dihydro‐1,2‐azaborine involves both photoreactions and thermal reactions. The calculated results clarify recent experimental observations.  相似文献   

4.
The BN analogue of ortho‐benzyne, 1,2‐azaborine, is shown to bind carbon monoxide and a xenon atom under matrix isolation conditions, demonstrating its strongly Lewis acidic superelectrophilic nature. The Lewis acid–base complexes involving CO and Xe can be cleaved photochemically and reformed by mildly annealing the matrices. The interaction energy of 1,2‐azaborine with Xe is 3 kcal mol?1 according to quantum chemical computations, and is similar to that of the superelectrophilic carbene difluorovinylidene.  相似文献   

5.
The BN analogue of ortho‐benzyne, 1,2‐azaborine, is generated by flash vacuum pyrolysis, trapped under cryogenic conditions, and studied by direct spectroscopic techniques. The parent BN aryne spontaneously binds N2 and CO2, thus demonstrating its highly reactive nature. The interaction with N2 is photochemically reversible. The CO2 adduct of 1,2‐azaborine is a cyclic carbamate which undergoes photocleavage, thus resulting in overall CO2 splitting.  相似文献   

6.
The imidazo[1,2‐a]pyridine system was investigated as a synthon for the building of very attractive fused triazines, a planar, angular tri‐heterocycle with potential biological activity. Thus ethyl 3‐nitroimidazo[1,2‐a]pyridine‐2‐carboxylate was treated with ammonia or with an excess of primary amines to generate the corresponding substituted nitro carboxamidoimidazopyridines. The nitro substituent in the latter products, was reduced to yield 3‐amino‐2‐carboxamidoimidazo[1,2‐a]pyridine derivatives, which in turn were treated with nitrous acid to furnish 1‐oxo‐2‐substituted pyrido(1′,2′:1,2)imidazo[5,4‐d]‐1,2,3‐triazines.  相似文献   

7.
The reaction of di(alkyn‐1‐yl)vinylsilanes R1(H2C═CH)Si(C≡C―R)2 (R1 = Me ( 1 ), Ph ( 2 ); R = Bu (a), Ph (b), Me2HSi (c)) at 25°C with 1 equiv. of 9‐borabicyclo[3.3.1]nonane (9‐BBN) affords 1‐silacyclopent‐2‐ene derivatives ( 3a , 3b , 3c , 4a , 4b ), bearing one Si―C≡C―R function readily available for further transformations. These compounds are formed by consecutive 1,2‐hydroboration followed by intramolecular 1,1‐carboboration. Treated with a further equivalent of 9‐BBN in benzene they are converted at relatively high temperature (80–100°C) into 1‐alkenyl‐1‐silacyclopent‐2‐ene derivatives ( 5a , 5b 6a , 6b ) as a result of 1,2‐hydroboration of the Si―C≡C―R function. Protodeborylation of the 9‐BBN‐substituted 1‐silacyclopent‐2‐ene derivatives 3 , 4 , 5 , 6 , using acetic acid in excess, proceeds smoothly to give the novel 1‐silacyclopent‐2‐ene ( 7 , 8 , 9 , 10 ). The solution‐state structural assignment of all new compounds, i.e. di(alkyn‐1‐yl)vinylsilanes and 1‐silacyclopent‐2‐ene derivatives, was carried out using multinuclear magnetic resonance techniques (1H, 13C, 11B, 29Si NMR). The gas phase structures of some examples were calculated and optimized by density functional theory methods (B3LYP/6‐311+G/(d,p) level of theory), and 29Si NMR parameters were calculated (chemical shifts δ29Si and coupling constants nJ(29Si,13C)). Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
We report the first general synthesis of boron‐substituted monobenzofused 1,4‐azaborines using ring‐closing metathesis of an enamine‐containing diene as a key synthetic strategy. As part of our investigations, we discovered that the B‐C3 moiety in a 1,4‐azaborine can serve uniquely as a η2‐L‐type ligand. This functionality is exemplified by two κ2N‐η2‐BC Pt complexes of a boron‐pyridyl‐substituted monobenzofused‐1,4‐azaborine. Single‐crystal X‐ray diffraction analysis of the Pt complexes shows a strong structural contribution from the iminium resonance form of the monobenzofused‐1,4‐azaborine ligand. We also demonstrate that a palladium(0) complex supported by a 1,4‐azaborine‐based phosphine ligand can catalyze hydroboration of 1‐buten‐3‐yne with unique selectivity. In view of the importance of arene–metal π‐interactions in catalytic applications, this work should open new opportunities for ligand design involving the 1,4‐azaborine motif as an arene substitute.  相似文献   

9.
We report the first general synthesis of boron‐substituted monobenzofused 1,4‐azaborines using ring‐closing metathesis of an enamine‐containing diene as a key synthetic strategy. As part of our investigations, we discovered that the B‐C3 moiety in a 1,4‐azaborine can serve uniquely as a η2‐L‐type ligand. This functionality is exemplified by two κ2N‐η2‐BC Pt complexes of a boron‐pyridyl‐substituted monobenzofused‐1,4‐azaborine. Single‐crystal X‐ray diffraction analysis of the Pt complexes shows a strong structural contribution from the iminium resonance form of the monobenzofused‐1,4‐azaborine ligand. We also demonstrate that a palladium(0) complex supported by a 1,4‐azaborine‐based phosphine ligand can catalyze hydroboration of 1‐buten‐3‐yne with unique selectivity. In view of the importance of arene–metal π‐interactions in catalytic applications, this work should open new opportunities for ligand design involving the 1,4‐azaborine motif as an arene substitute.  相似文献   

10.
The title cyclohexenone 1d undergoes photodimerization selectively at the exocyclic C?C bond to give a 1 : 1 mixture of 1,2‐dialkynyl‐1,2‐dimethylcyclobutanes 6 and 7 . On irradiation in the presence of 2,3‐dimethylbuta‐1,3‐diene, 1d affords bicyclo[8.4.0]tetradeca‐1,2,3,7‐tetraen‐11‐one 9 . This – formal – (6+4)‐cycloadduct undergoes quantitative isomerization to 3‐cycloheptadienyl‐2,5,5‐trimethylcyclohex‐2‐enone 11 on treatment with basic silica gel.  相似文献   

11.
1,2‐Dicyanotetrafluorobenzene (1,2‐DCTB) was polycondensed with various flexible diphenols in a molar ratio of 1:2, and experimental parameters such as the concentration and temperature were varied. Certain diphenols allowed a complete substitution of all C? F bonds, so perfect multicyclic polyethers (BnCN, where B stands for bridge units, C represents cycles, and N is the degree of polymerization) were the main reaction products. Despite complete conversion, gelation was avoidable under optimized reaction conditions. However, in the case of 1,3‐dicyanotetrafluorobenzene (1,3‐DCTB), complete tetrasubstitution was not feasible with a feed ratio of 1:2. Yet, because of the inductive and mesomeric electronic interactions of all substituents in 1,3‐DCTB, the three C? F groups in the ortho position with respect to the cyano groups were significantly more reactive than the fourth C? F bond. Therefore, polycondensations with diphenols in a 3:2 feed ratio showed a relatively clean course, yielding soluble multicycles of structure Bn /2CN. All the multicyclic polyethers were amorphous and possessed molar mass distributions with polydispersities greater than 2. Heating with Cu2+ salts caused crosslinking of the multicycles derived from 1,2‐DCTB because of the formation of phthalocyanine complexes. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5546–5556, 2006  相似文献   

12.
The resolution of (1α,5α,6α)‐6‐bromo‐6‐fluoro‐1‐phenylbicyclo[3.1.0]hexane (rac‐ 5) provided the enantiomerically pure precursors (?)‐ 5 and (+)‐ 5 of 1‐phenyl‐1,2‐cyclohexadiene. On treatment of (?)‐ 5 with methyllithium in the presence of 2,5‐dimethylfuran, the pure (?)‐enantiomer of the [4+2] cycloadduct of 2,5‐dimethylfuran onto 1‐phenyl‐1,2‐cyclohexadiene was obtained exclusively. From this result, it is concluded that pure (M)‐1‐phenyl‐1,2‐cyclohexadiene ((M)‐ 7 ) emerged from (?)‐ 5 and was enantiospecifically intercepted to give the product. In the case of indene as trap for (M)‐ 7 , the (?)‐ and the (+)‐enantiomer of the [2+2] cycloadduct were formed in the ratio of 95:5. Highly surprising, remarkable enantioselectivities were also observed, when (M)‐ 7 was trapped with styrene to furnish two diastereomeric [2+2] cycloadducts. Hence, the achiral conformation of the diradical conceivable as intermediate cannot play a decisive part. The enantioselective generation of (M)‐ and (P)‐ 7 by the β‐elimination route was tested as well. Accordingly, 1‐bromo‐2‐phenylcyclohexene was exposed to the potassium salt of (?)‐menthol in the presence of 2,5‐dimethylfuran, and the enantiomeric [4+2] cycloadducts of the latter onto (M)‐ and (P)‐ 7 were produced in the ratio of 55:45.  相似文献   

13.
A series of diarene‐fused 1,2‐dihydro‐1,2‐diborins were prepared as a new B? B‐bond‐embedded polycyclic π‐electron system. The reduction of these compounds with metals produced their corresponding dianions, the π‐conjugation modes of which varied from 6π‐conjugation within the central 1,2‐diborin skeleton to 14π peripheral conjugation over the tricyclic skeleton, depending on the nature of the reduced biaryl framework. Moreover, the countercation to the dianions had a significant effect on the absorption spectra, with a dramatic color change from yellow to deep blue, depending on the distance between the tricyclic dianion skeleton and the countercation.  相似文献   

14.
A series of 2‐alkynyl carbonyl compounds that contain a cyclopentene ring or a heterocycle can be transformed into various fused dihydrobenzofurans and tetrahydrofuro[2,3‐c]pyridines by means of a 1,2‐alkyl migration process. Both of these reactions proceed with excellent regioselectivity and stereospecificity when using a cationic gold(I) catalyst. Treatment of 4‐styrylcyclopent‐1‐enecarboxylates under different conditions affords a range of highly functionalized dihydrobenzofurans and dihydroisobenzofurans. A divergence in product selectivity, which depends on the anion of the silver salts used, was observed. Interestingly, ring‐fused tetrahydroquinolines undergo only 1,2′‐alkyl migration reaction by means of a C? C cleavage/cyclization sequence to provide tetrahydroazepine derivatives. Mechanistic studies suggest that the gold complexes catalyze 1,2‐alkyl migration reactions through a concerted reaction pathway and 1,2′‐alkyl migration reactions through a stepwise reaction pathway.  相似文献   

15.
Valuable polyester monomers and plasticizers—1,4‐cyclohexanedimethanol (CHDM), 1,4‐cyclohexanedicarboxylic acid (CHDA), and 1,2‐cyclohexanedicarboxylates—have been prepared by a new strategy. The synthetic processes involve a proline‐catalyzed formal [3+1+2] cycloaddition of formaldehyde, crotonaldehyde, and acrylate (or fumarate). CHDM is produced after a subsequent hydrogenation step over a commercially available Cu/Zn/Al catalyst and a one‐pot hydrogenation/oxidation/hydrolysis process yields CHDA, whereas 1,2‐cyclohexanedicarboxylate is obtained by a Pd/C‐catalyzed tandem decarbonylation/hydrogenation step.  相似文献   

16.
Valuable polyester monomers and plasticizers—1,4‐cyclohexanedimethanol (CHDM), 1,4‐cyclohexanedicarboxylic acid (CHDA), and 1,2‐cyclohexanedicarboxylates—have been prepared by a new strategy. The synthetic processes involve a proline‐catalyzed formal [3+1+2] cycloaddition of formaldehyde, crotonaldehyde, and acrylate (or fumarate). CHDM is produced after a subsequent hydrogenation step over a commercially available Cu/Zn/Al catalyst and a one‐pot hydrogenation/oxidation/hydrolysis process yields CHDA, whereas 1,2‐cyclohexanedicarboxylate is obtained by a Pd/C‐catalyzed tandem decarbonylation/hydrogenation step.  相似文献   

17.
The newly synthesized 2‐(alk‐3‐en‐1‐ynyl)cyclohex‐2‐enones 4 undergo photodimerization (chemo‐ and regio‐)selectively at the exocyclic C?C bond to give diastereoisomeric mixtures of 1,2‐dialkynyl‐1,2‐dimethylcyclobutanes. On irradiation of 4 in the presence of 2‐chloroacrylonitrile, cyclobutane formation occurs again (chemo‐ and regio‐)selectively at the exocyclic C?C bond to afford diastereoisomeric mixtures of 2‐alkynyl‐1‐chloro‐2‐methylcyclobutanecarbonitriles. Similarly, compounds 4 undergo photoaddition to 2,3‐dimethylbuta‐1,3‐diene exclusively at the exocyclic C?C bond to afford mixtures of [2+2] and [4+2] cycloadducts.  相似文献   

18.
In this study density functional theory (DFT) calculations at B3LYP/6-31G(d), B3LYP/6-31+G(d) and B3LYP/6-311+G(2df,2p) levels for geometry optimization and total energy calculation were applied for investigation of the important energy-minimum conformations and transition-state of 1,2-, 1,3-, and 1,4-dithiepanes. Moreover, ab initio calculations at HF/6-31G(d) level of theory for geometry optimization and MP2/6-311G(d)//HF/ 6-31G(d) level for a single-point total energy calculation were reported for different conformers. The obtained results reveal that, the twist-chair conformer is a global minimum for all of these compounds. Also, two local minimum were found in each case, which are twisted-chair and twisted-boat conformers. The boat and chair geometries are transition states. The minimum energy conformation of 1,2-dithiepane is more stable than the lowest energy forms of 1,3-dithiepane and 1,4-dithiepane. Furthermore, the anomeric effect was investigated for 1,3-dithiepane by the natural bond orbital method. The computational results of this study shows that all conformers of 1,3-dithiepane have a hypercojugation system. Finally, the 13C NMR chemical shifts for the conformers of 1,4-dithiepane were calculated, which have good correlation with their experimental values.  相似文献   

19.
The reaction of alkyn‐1‐yl(chloro)(methyl)vinyl‐ and alkyn‐1‐yl(chloro)(phenyl)‐vinylsilane with 9‐borabicyclo[3.3.1]nonane (9‐BBN) afforded selectively 1‐silacyclopent‐2‐ene derivatives containing a Si? Cl function, as a result of consecutive 1,2‐hydroboration and 1,1‐organoboration. Protodeborylation with acetic acid left the Si? Cl functions in various 1‐silacyclopent‐2‐enes untouched, whereas acetic acid in the presence of dipropylamine led to conversion of the Si? Cl into the Si? OAc function. New starting materials and all products were characterized in solution by multinuclear NMR spectroscopy (1H, 11B, 13C and 29Si NMR), and the molecular structures of two 1‐silacyclopent‐2‐ene derivatives were determined by X‐ray analysis. The gas phase geometries of 1‐silacyclopent‐2‐enes were optimized by DFT calculations [B3LYP/6‐311 + G(d,p) level of theory], found to be in reasonable agreement with the results of the crystal structure determination, and NMR parameters were calculated at the same level of theory. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
The title compound, 9‐iodo‐1,2‐di­phenyl‐1,2‐dicarba‐closo‐dodecaborane(9), C14H19B10I, has the expected pseudo‐icosahedral cluster geometry, with a cage C—C distance of 1.724 (4) Å, comparable to that in the non‐iodinated parent. However, the twist angles, θ, of the phenyl rings are 2.1 (6) and 27.6 (5)°, the latter being unusually large.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号